Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, United Kingdom; Fluidic Analytics Ltd, Cambridge, United Kingdom. Electronic address: https://twitter.com/AlexeyMorgunov.
Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, United Kingdom. Electronic address: https://twitter.com/KadiLiisSaar.
J Mol Biol. 2021 Oct 1;433(20):167232. doi: 10.1016/j.jmb.2021.167232. Epub 2021 Sep 6.
Protein function is fundamentally reliant on inter-molecular interactions that underpin the ability of proteins to form complexes driving biological processes in living cells. Increasingly, such interactions are recognised as being formed between proteins that exist on a broad spectrum of dynamic conformational states and levels of intrinsic disorder. Additionally, the sizes of the structures formed can range from simple binary complexes to large dynamic biomolecular condensates measuring 100 nm or more. Understanding the parameters that govern such interactions, how they form, how they lead to function and what happens when they take place in unintended manners and lead to disease, represent some of the core questions for molecular biosciences. In light of recent advances made in solving the protein folding problem by machine learning methods, we discuss here the challenges and opportunities brought by these new data-driven approaches for the next frontiers of biomolecular science.
蛋白质的功能从根本上依赖于分子间的相互作用,这些相互作用使蛋白质能够形成复合物,从而驱动活细胞中的生物过程。越来越多的证据表明,这些相互作用是在广泛的动态构象状态和固有无序程度的蛋白质之间形成的。此外,形成的结构大小可以从简单的二元复合物到测量尺寸为 100nm 或更大的大型动态生物分子凝聚物。了解控制这些相互作用的参数、它们是如何形成的、它们如何导致功能以及当它们以意想不到的方式发生并导致疾病时会发生什么,这些都是分子生物科学的核心问题。鉴于最近通过机器学习方法解决蛋白质折叠问题方面取得的进展,我们在这里讨论了这些新的数据驱动方法为生物分子科学的下一个前沿领域带来的挑战和机遇。