Suppr超能文献

赖氨酸反应性化学的蛋白质组学图谱。

A proteome-wide atlas of lysine-reactive chemistry.

机构信息

Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.

出版信息

Nat Chem. 2021 Nov;13(11):1081-1092. doi: 10.1038/s41557-021-00765-4. Epub 2021 Sep 9.

Abstract

Recent advances in chemical proteomics have begun to characterize the reactivity and ligandability of lysines on a global scale. Yet, only a limited diversity of aminophilic electrophiles have been evaluated for interactions with the lysine proteome. Here, we report an in-depth profiling of >30 uncharted aminophilic chemotypes that greatly expands the content of ligandable lysines in human proteins. Aminophilic electrophiles showed disparate proteomic reactivities that range from selective interactions with a handful of lysines to, for a set of dicarboxaldehyde fragments, remarkably broad engagement of the covalent small-molecule-lysine interactions captured by the entire library. We used these latter 'scout' electrophiles to efficiently map ligandable lysines in primary human immune cells under stimulatory conditions. Finally, we show that aminophilic compounds perturb diverse biochemical functions through site-selective modification of lysines in proteins, including protein-RNA interactions implicated in innate immune responses. These findings support the broad potential of covalent chemistry for targeting functional lysines in the human proteome.

摘要

近年来,化学蛋白质组学的进展已经开始在全球范围内描述赖氨酸的反应性和配体结合能力。然而,只有有限的多样性的亲核试剂已被评估与赖氨酸蛋白质组的相互作用。在这里,我们报告了 >30 种未被标记的亲核化学型的深入分析,这些化学型极大地扩展了人类蛋白质中可配体化赖氨酸的含量。亲核试剂表现出不同的蛋白质组反应性,从与少数几个赖氨酸的选择性相互作用,到一组二醛片段,显著广泛地参与了整个文库中捕获的共价小分子-赖氨酸相互作用。我们使用这些后一类“侦察”亲电试剂,在刺激条件下有效地映射原代人免疫细胞中的可配体化赖氨酸。最后,我们表明,亲核化合物通过在蛋白质中选择性修饰赖氨酸来干扰多种生化功能,包括参与先天免疫反应的蛋白质-RNA 相互作用。这些发现支持了共价化学在靶向人类蛋白质组中功能赖氨酸方面的广泛潜力。

相似文献

1
A proteome-wide atlas of lysine-reactive chemistry.
Nat Chem. 2021 Nov;13(11):1081-1092. doi: 10.1038/s41557-021-00765-4. Epub 2021 Sep 9.
2
Global Profiling Lysine Reactivity and Ligandability with Oxidant-Triggered Bioconjugation Chemistry.
Angew Chem Int Ed Engl. 2025 Feb 3;64(6):e202418473. doi: 10.1002/anie.202418473. Epub 2024 Nov 29.
3
Global profiling of lysine reactivity and ligandability in the human proteome.
Nat Chem. 2017 Dec;9(12):1181-1190. doi: 10.1038/nchem.2826. Epub 2017 Jul 31.
4
Biomimetic Synthesis and Chemical Proteomics Reveal the Mechanism of Action and Functional Targets of Phloroglucinol Meroterpenoids.
J Am Chem Soc. 2024 Jan 31;146(4):2524-2548. doi: 10.1021/jacs.3c10741. Epub 2024 Jan 17.
5
Tunable Amine-Reactive Electrophiles for Selective Profiling of Lysine.
Angew Chem Int Ed Engl. 2022 Jan 26;61(5):e202112107. doi: 10.1002/anie.202112107. Epub 2021 Dec 16.
6
Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes.
Nat Chem. 2023 Nov;15(11):1616-1625. doi: 10.1038/s41557-023-01281-3. Epub 2023 Jul 17.
7
Lysine-Targeted Inhibitors and Chemoproteomic Probes.
Annu Rev Biochem. 2019 Jun 20;88:365-381. doi: 10.1146/annurev-biochem-061516-044805. Epub 2019 Jan 11.
8
Investigating the proteome reactivity and selectivity of aryl halides.
J Am Chem Soc. 2014 Mar 5;136(9):3330-3. doi: 10.1021/ja4116204. Epub 2014 Feb 24.
10
Applications of Reactive Cysteine Profiling.
Curr Top Microbiol Immunol. 2019;420:375-417. doi: 10.1007/82_2018_120.

引用本文的文献

1
Cysteine reactivity profiling identifies host regulators of replication in human macrophages.
bioRxiv. 2025 Sep 3:2025.08.30.673236. doi: 10.1101/2025.08.30.673236.
2
Noncompetitive Inhibition of DNA Polymerase β by a Nonnative Nucleotide.
J Org Chem. 2025 Sep 7. doi: 10.1021/acs.joc.5c01529.
3
Targeted Protein Modification with an Antibody-Based System.
ACS Cent Sci. 2025 Jul 7;11(8):1364-1376. doi: 10.1021/acscentsci.5c00651. eCollection 2025 Aug 27.
4
Lysine-Targeting Inhibitors of Amyloidogenic Protein Aggregation: A Promise for Neurodegenerative Proteinopathies.
JACS Au. 2025 Aug 11;5(8):3680-3700. doi: 10.1021/jacsau.5c00269. eCollection 2025 Aug 25.
5
Advances in sulfonyl exchange chemical biology: expanding druggable target space.
Chem Sci. 2025 May 6;16(23):10119-10140. doi: 10.1039/d5sc02647d. eCollection 2025 Jun 11.
6
Computational Design of Lysine Targeting Covalent Binders Using Rosetta.
J Chem Inf Model. 2025 May 29. doi: 10.1021/acs.jcim.5c00212.
7
Chemical Switching: A Concept Inspired by Strategies from Biocatalysis and Organocatalysis.
Chembiochem. 2025 Jun 3;26(11):e202500220. doi: 10.1002/cbic.202500220. Epub 2025 May 26.
8
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
9
10
Size-Dependent Target Engagement of Covalent Probes.
J Med Chem. 2025 Mar 27;68(6):6616-6632. doi: 10.1021/acs.jmedchem.5c00017. Epub 2025 Mar 18.

本文引用的文献

1
An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells.
Cell. 2020 Aug 20;182(4):1009-1026.e29. doi: 10.1016/j.cell.2020.07.001. Epub 2020 Jul 29.
2
Light-Activatable, 2,5-Disubstituted Tetrazoles for the Proteome-wide Profiling of Aspartates and Glutamates in Living Bacteria.
ACS Cent Sci. 2020 Apr 22;6(4):546-554. doi: 10.1021/acscentsci.9b01268. Epub 2020 Apr 13.
3
2-Azirine-Based Reagents for Chemoselective Bioconjugation at Carboxyl Residues Inside Live Cells.
J Am Chem Soc. 2020 Apr 1;142(13):6051-6059. doi: 10.1021/jacs.9b12116. Epub 2020 Mar 23.
4
Global targeting of functional tyrosines using sulfur-triazole exchange chemistry.
Nat Chem Biol. 2020 Feb;16(2):150-159. doi: 10.1038/s41589-019-0404-5. Epub 2019 Nov 25.
5
Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16.
Nat Chem Biol. 2019 Jul;15(7):737-746. doi: 10.1038/s41589-019-0279-5. Epub 2019 Jun 17.
7
Lysine-Targeted Inhibitors and Chemoproteomic Probes.
Annu Rev Biochem. 2019 Jun 20;88:365-381. doi: 10.1146/annurev-biochem-061516-044805. Epub 2019 Jan 11.
8
Protein-RNA interactions: structural characteristics and hotspot amino acids.
RNA. 2018 Nov;24(11):1457-1465. doi: 10.1261/rna.066464.118. Epub 2018 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验