Han Hui, Yang Chunlong, Zhang Shuishen, Cheng Maosheng, Guo Siyao, Zhu Yan, Ma Jieyi, Liang Yu, Wang Lu, Zheng Siyi, Wang Zhaoyu, Chen Demeng, Jiang Yi-Zhou, Lin Shuibin
Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
Mol Ther Nucleic Acids. 2021 Jul 21;26:333-346. doi: 10.1016/j.omtn.2021.07.007. eCollection 2021 Dec 3.
Esophageal cancer is a lethal malignancy with a high mortality rate, while the molecular mechanisms underlying esophageal cancer pathogenesis are still poorly understood. Here, we found that the N6-methyladenosine (mA) methyltransferase-like 3 (METTL3) is significantly upregulated in esophageal squamous cell carcinoma (ESCC) and associated with poor patient prognosis. Depletion of METTL3 results in decreased ESCC growth and progression and . We further established ESCC initiation and progression models using conditional knockout mouse and revealed that 3METTL3-mediated mA modification promotes ESCC initiation and progression . Moreover, using METTL3 overexpression ESCC cell model and conditional knockin mouse model, we demonstrated the critical function of METTL3 in promoting ESCC tumorigenesis and . Mechanistically, METTL3-catalyzed mA modification promotes NOTCH1 expression and the activation of the Notch signaling pathway. Forced activation of Notch signaling pathway successfully rescues the growth, migration, and invasion capacities of METTL3-depleted ESCC cells. Our data uncovered important mechanistical insights underlying ESCC tumorigenesis and provided molecular basis for the development of novel strategies for ESCC diagnosis and treatment.
食管癌是一种死亡率很高的致命恶性肿瘤,然而食管癌发病机制的分子机制仍知之甚少。在此,我们发现N6-甲基腺苷(m6A)甲基转移酶样3(METTL3)在食管鳞状细胞癌(ESCC)中显著上调,并与患者预后不良相关。METTL3的缺失导致ESCC生长和进展减缓。我们进一步使用条件性敲除小鼠建立了ESCC起始和进展模型,并揭示METTL3介导的m6A修饰促进ESCC的起始和进展。此外,使用METTL3过表达的ESCC细胞模型和条件性敲入小鼠模型,我们证明了METTL3在促进ESCC肿瘤发生中的关键作用。从机制上讲,METTL3催化的m6A修饰促进NOTCH1表达和Notch信号通路的激活。Notch信号通路的强制激活成功挽救了METTL3缺失的ESCC细胞的生长、迁移和侵袭能力。我们的数据揭示了ESCC肿瘤发生的重要机制见解,并为开发ESCC诊断和治疗的新策略提供了分子基础。