Suppr超能文献

基于光致碱的激发态质子转移设计大斯托克斯位移荧光蛋白。

Design of Large Stokes Shift Fluorescent Proteins Based on Excited State Proton Transfer of an Engineered Photobase.

机构信息

Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States.

出版信息

J Am Chem Soc. 2021 Sep 22;143(37):15091-15102. doi: 10.1021/jacs.1c05039. Epub 2021 Sep 13.

Abstract

The incredible potential for fluorescent proteins to revolutionize biology has inspired the development of a variety of design strategies to address an equally broad range of photophysical characteristics, depending on potential applications. Of these, fluorescent proteins that simultaneously exhibit high quantum yield, red-shifted emission, and wide separation between excitation and emission wavelengths (Large Stokes Shift, LSS) are rare. The pursuit of LSS systems has led to the formation of a complex, obtained from the marriage of a rationally engineered protein (human cellular retinol binding protein II, hCRBPII) and different fluorogenic molecules, capable of supporting photobase activity. The large increase in basicity upon photoexcitation leads to protonation of the fluorophore in the excited state, dramatically red-shifting its emission, leading to an LSS protein/fluorophore complex. Essential for selective photobase activity is the intimate involvement of the target protein structure and sequence that enables Excited State Proton Transfer (ESPT). The potential power and usefulness of the strategy was demonstrated in live cell imaging of human cell lines.

摘要

荧光蛋白在生物学领域具有令人难以置信的潜力,可以通过各种设计策略来满足广泛的光物理特性,具体取决于潜在的应用。在这些设计策略中,同时具有高量子产率、红移发射和激发与发射波长之间宽分离(大斯托克斯位移,LSS)的荧光蛋白很少见。对 LSS 系统的追求导致了一种复杂体系的形成,该体系是通过合理设计的蛋白质(人细胞视黄醇结合蛋白 II,hCRBPII)和不同的生色分子的结合而获得的,这种体系能够支持光致碱活性。光激发导致的碱性大幅增加会导致荧光团在激发态下质子化,从而显著红移其发射,从而形成 LSS 蛋白/荧光团复合物。选择性光致碱活性的关键是靶蛋白结构和序列的紧密参与,这使得激发态质子转移(ESPT)成为可能。该策略在人细胞系的活细胞成像中的潜在威力和实用性得到了证明。

相似文献

1
Design of Large Stokes Shift Fluorescent Proteins Based on Excited State Proton Transfer of an Engineered Photobase.
J Am Chem Soc. 2021 Sep 22;143(37):15091-15102. doi: 10.1021/jacs.1c05039. Epub 2021 Sep 13.
4
Elucidating photocycle in large Stokes shift red fluorescent proteins: Focus on mKeima.
Photochem Photobiol. 2024 Jul-Aug;100(4):897-909. doi: 10.1111/php.13964. Epub 2024 May 16.
5
Mapping the Complete Photocycle that Powers a Large Stokes Shift Red Fluorescent Protein.
Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202212209. doi: 10.1002/anie.202212209. Epub 2022 Dec 22.
6
Photobase-Driven Excited-State Intramolecular Proton Transfer (ESIPT) in a Strapped π-Electron System.
Chemistry. 2022 Jan 19;28(4):e202103584. doi: 10.1002/chem.202103584. Epub 2021 Dec 13.
7
mBeRFP, an improved large stokes shift red fluorescent protein.
PLoS One. 2013 Jun 20;8(6):e64849. doi: 10.1371/journal.pone.0064849. Print 2013.
8
Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity.
PLoS One. 2017 Feb 27;12(2):e0171257. doi: 10.1371/journal.pone.0171257. eCollection 2017.
9
A Multicolor Large Stokes Shift Fluorogen-Activating RNA Aptamer with Cationic Chromophores.
Chemistry. 2019 Feb 6;25(8):1931-1935. doi: 10.1002/chem.201805882. Epub 2019 Jan 11.
10
Monomeric red fluorescent proteins with a large Stokes shift.
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5369-74. doi: 10.1073/pnas.0914365107. Epub 2010 Mar 8.

引用本文的文献

1
Dimerizing Heptamethine Cyanine Fluorophores from the Meso Position: Synthesis, Optical Properties, and Metal Sensing Studies.
Org Lett. 2025 Jun 27;27(25):6623-6629. doi: 10.1021/acs.orglett.5c01620. Epub 2025 Jun 9.
6
pH-responsive supramolecular switch of a rationally designed dipyrroethene-based chromophore.
Chem Sci. 2024 Dec 16;16(4):1772-1782. doi: 10.1039/d4sc07016j. eCollection 2025 Jan 22.
7
Regulation of Absorption and Emission in a Protein/Fluorophore Complex.
ACS Chem Biol. 2024 Aug 16;19(8):1725-1732. doi: 10.1021/acschembio.4c00125. Epub 2024 Jul 24.
8
Excited State Proton Transfer from Acidic Alcohols to a Quinoline Photobase Can Be Solvated by Non-Acidic Alcohol Solvents.
J Phys Chem A. 2024 Aug 1;128(30):6199-6207. doi: 10.1021/acs.jpca.4c02907. Epub 2024 Jul 22.
9
Structural Analysis of the Large Stokes Shift Red Fluorescent Protein tKeima.
Molecules. 2024 May 30;29(11):2579. doi: 10.3390/molecules29112579.
10
Structural basis of a small monomeric Clivia fluorogenic RNA with a large Stokes shift.
Nat Chem Biol. 2024 Nov;20(11):1453-1460. doi: 10.1038/s41589-024-01633-1. Epub 2024 May 30.

本文引用的文献

2
Excimer-FRET Cascade in Dual DNA Probes: Open Access to Large Stokes Shift, Enhanced Acceptor Light up, and Robust RNA Sensing.
Anal Chem. 2020 May 19;92(10):7028-7036. doi: 10.1021/acs.analchem.0c00270. Epub 2020 May 5.
3
An ICT-based fluorescent probe with a large Stokes shift for measuring hydrazine in biological and water samples.
Environ Pollut. 2020 Jan;256:113427. doi: 10.1016/j.envpol.2019.113427. Epub 2019 Oct 18.
5
Engineering the hCRBPII Domain-Swapped Dimer into a New Class of Protein Switches.
J Am Chem Soc. 2019 Oct 30;141(43):17125-17132. doi: 10.1021/jacs.9b04664. Epub 2019 Oct 16.
6
Proton Abstraction Mediates Interactions between the Super Photobase FR0-SB and Surrounding Alcohol Solvent.
J Phys Chem B. 2019 Oct 10;123(40):8448-8456. doi: 10.1021/acs.jpcb.9b06580. Epub 2019 Sep 27.
7
Engineering of a Red Fluorogenic Protein/Merocyanine Complex for Live-Cell Imaging.
Chembiochem. 2020 Mar 2;21(5):723-729. doi: 10.1002/cbic.201900428. Epub 2019 Nov 13.
8
Mimicking Microbial Rhodopsin Isomerization in a Single Crystal.
J Am Chem Soc. 2019 Jan 30;141(4):1735-1741. doi: 10.1021/jacs.8b12493. Epub 2019 Jan 14.
9
Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents.
Chem Soc Rev. 2018 Nov 26;47(23):8842-8880. doi: 10.1039/c8cs00185e.
10
A Near-Infrared Photoswitchable Protein-Fluorophore Tag for No-Wash Live Cell Imaging.
Angew Chem Int Ed Engl. 2018 Dec 3;57(49):16083-16087. doi: 10.1002/anie.201810065. Epub 2018 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验