Suppr超能文献

慢性下背痛亚型的神经免疫特征。

Neuroimmune signatures in chronic low back pain subtypes.

机构信息

Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Brain. 2022 Apr 29;145(3):1098-1110. doi: 10.1093/brain/awab336.

Abstract

We recently showed that patients with different chronic pain conditions (such as chronic low back pain, fibromyalgia, migraine and Gulf War illness) demonstrated elevated brain and/or spinal cord levels of the glial marker 18-kDa translocator protein (TSPO), which suggests that neuroinflammation might be a pervasive phenomenon observable across multiple aetiologically heterogeneous pain disorders. Interestingly, the spatial distribution of this neuroinflammatory signal appears to exhibit a degree of disease specificity (e.g. with respect to the involvement of the primary somatosensory cortex), suggesting that different pain conditions may exhibit distinct 'neuroinflammatory signatures'. To explore this hypothesis further, we tested whether neuroinflammatory signal can characterize putative aetiological subtypes of chronic low back pain patients based on clinical presentation. Specifically, we explored neuroinflammation in patients whose chronic low back pain either did or did not radiate to the leg (i.e. 'radicular' versus 'axial' back pain). Fifty-four patients with chronic low back pain, 26 with axial back pain [43.7 ± 16.6 years old (mean ± SD)] and 28 with radicular back pain (48.3 ± 13.2 years old), underwent PET/MRI with 11C-PBR28, a second-generation radioligand for TSPO. 11C-PBR28 signal was quantified using standardized uptake values ratio (validated against volume of distribution ratio; n = 23). Functional MRI data were collected simultaneously to the 11C-PBR28 data (i) to functionally localize the primary somatosensory cortex back and leg subregions; and (ii) to perform functional connectivity analyses (in order to investigate possible neurophysiological correlations of the neuroinflammatory signal). PET and functional MRI measures were compared across groups, cross-correlated with one another and with the severity of 'fibromyalgianess' (i.e. the degree of pain centralization, or 'nociplastic pain'). Furthermore, statistical mediation models were used to explore possible causal relationships between these three variables. For the primary somatosensory cortex representation of back/leg, 11C-PBR28 PET signal and functional connectivity to the thalamus were: (i) higher in radicular compared to axial back pain patients; (ii) positively correlated with each other; (iii) positively correlated with fibromyalgianess scores, across groups; and finally (iv) fibromyalgianess mediated the association between 11C-PBR28 PET signal and primary somatosensory cortex-thalamus connectivity across groups. Our findings support the existence of 'neuroinflammatory signatures' that are accompanied by neurophysiological changes and correlate with clinical presentation (in particular, with the degree of nociplastic pain) in chronic pain patients. These signatures may contribute to the subtyping of distinct pain syndromes and also provide information about interindividual variability in neuroimmune brain signals, within diagnostic groups, that could eventually serve as targets for mechanism-based precision medicine approaches.

摘要

我们最近表明,患有不同慢性疼痛病症(如慢性下腰痛、纤维肌痛、偏头痛和海湾战争病)的患者表现出胶质标记物 18 kDa 转位蛋白(TSPO)的脑和/或脊髓水平升高,这表明神经炎症可能是一种普遍存在的现象,可在多种病因学上异质的疼痛障碍中观察到。有趣的是,这种神经炎症信号的空间分布似乎表现出一定程度的疾病特异性(例如,涉及初级体感皮层的参与),这表明不同的疼痛病症可能表现出不同的“神经炎症特征”。为了进一步探索这一假设,我们测试了神经炎症信号是否可以根据临床表现来描述慢性下腰痛患者的假定病因亚型。具体来说,我们研究了慢性下腰痛患者的神经炎症,这些患者的疼痛要么放射到腿部(即“根性”腰痛与“轴性”腰痛),要么没有放射到腿部。54 名慢性下腰痛患者,26 名轴性腰痛患者[43.7±16.6 岁(均值±标准差)]和 28 名根性腰痛患者[48.3±13.2 岁]接受了 11C-PBR28 的 PET/MRI 检查,11C-PBR28 是 TSPO 的第二代放射性配体。使用标准化摄取值比(与分布容积比相对验证;n=23)定量 11C-PBR28 信号。同时采集功能磁共振成像数据(i)对背部和腿部初级体感皮层进行功能定位;和(ii)进行功能连接分析(以研究神经炎症信号的可能神经生理学相关性)。对组间的 PET 和功能磁共振测量值进行了比较,相互交叉相关,并与“纤维肌痛样”(即疼痛集中化程度或“伤害感受性疼痛”)的严重程度进行了交叉相关。此外,使用统计中介模型来探索这三个变量之间的可能因果关系。对于背部/腿部的初级体感皮层代表,11C-PBR28 PET 信号和与丘脑的功能连接:(i)在根性腰痛患者中高于轴性腰痛患者;(ii)彼此正相关;(iii)与组间的纤维肌痛样评分正相关;最后(iv)纤维肌痛样在组间 11C-PBR28 PET 信号和初级体感皮层-丘脑连接之间的关联中起中介作用。我们的研究结果支持存在“神经炎症特征”的存在,这些特征伴随着神经生理学变化,并与慢性疼痛患者的临床表现(特别是伤害感受性疼痛的程度)相关。这些特征可能有助于对不同疼痛综合征进行亚型分类,并为诊断组内的神经免疫脑信号的个体间变异性提供信息,这些信息最终可能成为基于机制的精准医疗方法的目标。

相似文献

1
Neuroimmune signatures in chronic low back pain subtypes.
Brain. 2022 Apr 29;145(3):1098-1110. doi: 10.1093/brain/awab336.
2
Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation.
Brain Behav Immun. 2019 Jan;75:72-83. doi: 10.1016/j.bbi.2018.09.018. Epub 2018 Sep 14.
3
Evidence for brain glial activation in chronic pain patients.
Brain. 2015 Mar;138(Pt 3):604-15. doi: 10.1093/brain/awu377. Epub 2015 Jan 12.
4
The neuroinflammatory component of negative affect in patients with chronic pain.
Mol Psychiatry. 2021 Mar;26(3):864-874. doi: 10.1038/s41380-019-0433-1. Epub 2019 May 28.
5
[C]PBR28 radiotracer kinetics are not driven by alterations in cerebral blood flow.
J Cereb Blood Flow Metab. 2021 Nov;41(11):3069-3084. doi: 10.1177/0271678X211023387. Epub 2021 Jun 23.
8
Neuroimmune activation and increased brain aging in chronic pain patients after the COVID-19 pandemic onset.
Brain Behav Immun. 2024 Feb;116:259-266. doi: 10.1016/j.bbi.2023.12.016. Epub 2023 Dec 9.
10
Characterization of cortico-meningeal translocator protein expression in multiple sclerosis.
Brain. 2024 Jul 5;147(7):2566-2578. doi: 10.1093/brain/awae030.

引用本文的文献

3
Fibromyalgia in the Era of Brain PET/CT Imaging.
J Clin Med. 2025 Jun 12;14(12):4166. doi: 10.3390/jcm14124166.
5
How microglia contribute to the induction and maintenance of neuropathic pain.
Nat Rev Neurosci. 2025 May;26(5):263-275. doi: 10.1038/s41583-025-00914-5. Epub 2025 Mar 24.
6
What has brain diffusion magnetic resonance imaging taught us about chronic primary pain: a narrative review.
Pain. 2025 Feb 1;166(2):243-261. doi: 10.1097/j.pain.0000000000003345. Epub 2024 Aug 21.
9
"Neuroinflammation": does it have a role in chronic pain? Evidence from human imaging.
Pain. 2024 Nov 1;165(11S):S58-S67. doi: 10.1097/j.pain.0000000000003342.

本文引用的文献

1
Impact of Fibromyalgia Phenotype in Temporomandibular Disorders.
Pain Med. 2021 Sep 8;22(9):2050-2056. doi: 10.1093/pm/pnab077.
3
Thalamic neuroinflammation as a reproducible and discriminating signature for chronic low back pain.
Pain. 2021 Apr 1;162(4):1241-1249. doi: 10.1097/j.pain.0000000000002108.
4
Microglia: sculptors of neuropathic pain?
R Soc Open Sci. 2020 Jun 17;7(6):200260. doi: 10.1098/rsos.200260. eCollection 2020 Jun.
5
In-vivo imaging of neuroinflammation in veterans with Gulf War illness.
Brain Behav Immun. 2020 Jul;87:498-507. doi: 10.1016/j.bbi.2020.01.020. Epub 2020 Feb 4.
6
Astrocytes in chronic pain and itch.
Nat Rev Neurosci. 2019 Nov;20(11):667-685. doi: 10.1038/s41583-019-0218-1. Epub 2019 Sep 19.
7
An update on reactive astrocytes in chronic pain.
J Neuroinflammation. 2019 Jul 9;16(1):140. doi: 10.1186/s12974-019-1524-2.
8
The neuroinflammatory component of negative affect in patients with chronic pain.
Mol Psychiatry. 2021 Mar;26(3):864-874. doi: 10.1038/s41380-019-0433-1. Epub 2019 May 28.
9
Imaging of neuroinflammation in migraine with aura: A [C]PBR28 PET/MRI study.
Neurology. 2019 Apr 23;92(17):e2038-e2050. doi: 10.1212/WNL.0000000000007371. Epub 2019 Mar 27.
10
Low Back Pain, a Comprehensive Review: Pathophysiology, Diagnosis, and Treatment.
Curr Pain Headache Rep. 2019 Mar 11;23(3):23. doi: 10.1007/s11916-019-0757-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验