Suppr超能文献

硬脆材料加工与磨损的微观力学

Micromechanics of Machining and Wear in Hard and Brittle Materials.

作者信息

Lawn Brian R, Borrero-Lopez Oscar, Huang Han, Zhang Yu

机构信息

Material Measurement Laboratory, National Institute of Standards and Technology, MD 20899, United States.

Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain.

出版信息

J Am Ceram Soc. 2021 Jan;104(1):5-22. doi: 10.1111/jace.17502. Epub 2020 Sep 27.

Abstract

Hard and brittle solids with covalent/ionic bonding are used in a wide range of modern-day manufacturing technologies. Optimization of a shaping process can shorten manufacturing time and cost of component production, and at the same time extend component longevity. The same process may contribute to wear and fatigue degradation in service. Educated development of advanced finishing protocols for this class of solids requires a comprehensive understanding of damage mechanisms at small-scale contacts from a materials science perspective. In this article the fundamentals of brittle-ductile transitions in indentation stress fields are surveyed, with distinctions between axial and sliding loading and blunt and sharp contacts. Attendant deformation and removal mechanisms in microcontact processes are analyzed and discussed in the context of brittle and ductile machining and severe and mild wear. The central role of material microstructure in material removal modes is demonstrated.

摘要

具有共价/离子键的硬而脆的固体被广泛应用于现代制造技术中。优化成型工艺可以缩短零部件生产的制造时间和成本,同时延长零部件的使用寿命。然而,相同的工艺可能会导致服役过程中的磨损和疲劳退化。从材料科学的角度出发,有针对性地开发适用于这类固体的先进精加工方案,需要全面了解小尺度接触下的损伤机制。本文综述了压痕应力场中脆韧转变的基本原理,区分了轴向加载和滑动加载以及钝接触和尖接触。在脆性和韧性加工以及严重和轻微磨损的背景下,分析和讨论了微接触过程中伴随的变形和去除机制。证明了材料微观结构在材料去除模式中的核心作用。

相似文献

1
Micromechanics of Machining and Wear in Hard and Brittle Materials.
J Am Ceram Soc. 2021 Jan;104(1):5-22. doi: 10.1111/jace.17502. Epub 2020 Sep 27.
2
Threshold damage mechanisms in brittle solids and their impact on advanced technologies.
Acta Mater. 2022 Jun 15;232. doi: 10.1016/j.actamat.2022.117921. Epub 2022 Apr 10.
3
Exploring Ductility in Dental Ceramics.
J Dent Res. 2022 Nov;101(12):1467-1473. doi: 10.1177/00220345221100409. Epub 2022 Jun 10.
4
Scratching-induced surface characteristics and material removal mechanisms in rotary ultrasonic surface machining of CFRP.
Ultrasonics. 2019 Aug;97:19-28. doi: 10.1016/j.ultras.2019.04.004. Epub 2019 Apr 17.
5
Ductile and brittle transition behavior of titanium alloys in ultra-precision machining.
Sci Rep. 2018 Mar 2;8(1):3934. doi: 10.1038/s41598-018-22329-2.
8
Recent Developments in Mechanical Ultraprecision Machining for Nano/Micro Device Manufacturing.
Micromachines (Basel). 2024 Aug 14;15(8):1030. doi: 10.3390/mi15081030.
9
Microstructural responses of Zirconia materials to in-situ SEM nanoindentation.
J Mech Behav Biomed Mater. 2021 Jun;118:104450. doi: 10.1016/j.jmbbm.2021.104450. Epub 2021 Mar 10.
10
Slicing Ceramics on Material Removed by a Single Abrasive Particle.
Materials (Basel). 2020 Sep 28;13(19):4324. doi: 10.3390/ma13194324.

引用本文的文献

2
Balancing strength and translucency: The role of microstructure in additive and subtractive dental zirconia.
Dent Mater. 2025 Jun;41(6):690-698. doi: 10.1016/j.dental.2025.03.310. Epub 2025 Apr 11.
5
Brittle-Ductile Threshold in Lithium Disilicate under Sharp Sliding Contact.
J Dent Res. 2024 Jul;103(8):839-847. doi: 10.1177/00220345241256279. Epub 2024 Jun 14.
7
Threshold damage mechanisms in brittle solids and their impact on advanced technologies.
Acta Mater. 2022 Jun 15;232. doi: 10.1016/j.actamat.2022.117921. Epub 2022 Apr 10.
8
A Critical Review of Dental Lithia-Based Glass-Ceramics.
J Dent Res. 2023 Mar;102(3):245-253. doi: 10.1177/00220345221142755. Epub 2023 Jan 16.
9
Characterization of Bond Fracture in Discrete Groove Wear of Cageless Ball Bearings.
Materials (Basel). 2022 Sep 27;15(19):6711. doi: 10.3390/ma15196711.
10
Exploring Ductility in Dental Ceramics.
J Dent Res. 2022 Nov;101(12):1467-1473. doi: 10.1177/00220345221100409. Epub 2022 Jun 10.

本文引用的文献

1
Damage sensitivity of dental zirconias to simulated occlusal contact.
Dent Mater. 2021 Jan;37(1):158-167. doi: 10.1016/j.dental.2020.10.019. Epub 2020 Nov 21.
2
Inverse correlations between wear and mechanical properties in biphasic dental materials with ceramic constituents.
J Mech Behav Biomed Mater. 2020 May;105:103722. doi: 10.1016/j.jmbbm.2020.103722. Epub 2020 Mar 12.
3
Wear of ceramic-based dental materials.
J Mech Behav Biomed Mater. 2019 Apr;92:144-151. doi: 10.1016/j.jmbbm.2019.01.009. Epub 2019 Jan 12.
4
Evaluating dental zirconia.
Dent Mater. 2019 Jan;35(1):15-23. doi: 10.1016/j.dental.2018.08.291. Epub 2018 Aug 29.
6
Mechanics of microwear traces in tooth enamel.
Acta Biomater. 2015 Mar;14:146-53. doi: 10.1016/j.actbio.2014.11.047. Epub 2014 Dec 4.
7
A model for predicting wear rates in tooth enamel.
J Mech Behav Biomed Mater. 2014 Sep;37:226-34. doi: 10.1016/j.jmbbm.2014.05.023. Epub 2014 Jun 5.
8
Fatigue of dental ceramics.
J Dent. 2013 Dec;41(12):1135-47. doi: 10.1016/j.jdent.2013.10.007. Epub 2013 Oct 14.
9
The diets of early hominins.
Science. 2011 Oct 14;334(6053):190-3. doi: 10.1126/science.1207701.
10
Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei.
PLoS One. 2008 Apr 30;3(4):e2044. doi: 10.1371/journal.pone.0002044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验