Suppr超能文献

产乙酸甲烷八叠球菌在直接种间电子传递过程中电子摄取的机制。

Mechanisms for Electron Uptake by Methanosarcina acetivorans during Direct Interspecies Electron Transfer.

机构信息

Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.

Department of Physical and Biological Science, Western New England Universitygrid.268191.5, Springfield, Massachusetts, USA.

出版信息

mBio. 2021 Oct 26;12(5):e0234421. doi: 10.1128/mBio.02344-21. Epub 2021 Oct 5.

Abstract

Direct interspecies electron transfer (DIET) between bacteria and methanogenic archaea appears to be an important syntrophy in both natural and engineered methanogenic environments. However, the electrical connections on the outer surface of methanogens and the subsequent processing of electrons for carbon dioxide reduction to methane are poorly understood. Here, we report that the genetically tractable methanogen Methanosarcina acetivorans can grow via DIET in coculture with Geobacter metallireducens serving as the electron-donating partner. Comparison of gene expression patterns in grown in coculture versus pure-culture growth on acetate revealed that transcripts for the outer-surface multiheme type cytochrome MmcA were higher during DIET-based growth. Deletion of inhibited DIET. The high aromatic amino acid content of archaellins suggests that they might assemble into electrically conductive archaella. A mutant that could not express archaella was deficient in DIET. However, this mutant grew in DIET-based coculture as well as the archaellum-expressing parental strain in the presence of granular activated carbon, which was previously shown to serve as a substitute for electrically conductive pili as a conduit for long-range interspecies electron transfer in other DIET-based cocultures. Transcriptomic data suggesting that the membrane-bound Rnf, Fpo, and HdrED complexes also play a role in DIET were incorporated into a charge-balanced model illustrating how electrons entering the cell through MmcA can yield energy to support growth from carbon dioxide reduction. The results are the first genetics-based functional demonstration of likely outer-surface electrical contacts for DIET in a methanogen. The conversion of organic matter to methane plays an important role in the global carbon cycle and is an effective strategy for converting wastes to a useful biofuel. The reduction of carbon dioxide to methane accounts for approximately a third of the methane produced in anaerobic soils and sediments as well as waste digesters. Potential electron donors for carbon dioxide reduction are H or electrons derived from direct interspecies electron transfer (DIET) between bacteria and methanogens. Elucidating the relative importance of these electron donors has been difficult due to a lack of information on the electrical connections on the outer surfaces of methanogens and how they process the electrons received from DIET. Transcriptomic patterns and gene deletion phenotypes reported here provide insight into how a group of organisms that play an important role in methane production in soils and sediments participate in DIET.

摘要

细菌和产甲烷古菌之间的直接种间电子转移(DIET)似乎是自然和工程产甲烷环境中一种重要的共生关系。然而,产甲烷菌外表面的电子连接以及随后将电子用于二氧化碳还原为甲烷的过程还知之甚少。在这里,我们报告说,可遗传的产甲烷菌 Methanosarcina acetivorans 可以通过与作为电子供体的 Geobacter metallireducens 共培养进行 DIET。与纯培养在乙酸上生长相比,比较 在共培养中生长的基因表达模式表明,在基于 DIET 的生长过程中,外表面多血红素型细胞色素 MmcA 的转录物更高。的缺失抑制了 DIET。 古菌菌毛的高芳香族氨基酸含量表明它们可能组装成导电菌毛。不能表达菌毛的突变体在 DIET 共培养中以及表达菌毛的亲本菌株在颗粒活性炭存在下都缺乏 DIET。先前的研究表明,颗粒活性炭可作为导电菌毛的替代品,作为其他基于 DIET 的共培养中长程种间电子转移的通道。转录组数据表明,膜结合的 Rnf、Fpo 和 HdrED 复合物也在 DIET 中发挥作用,该数据被纳入一个电荷平衡模型中,说明了通过 MmcA 进入细胞的电子如何产生能量来支持从二氧化碳还原获得的生长。这些结果是第一个基于遗传学的功能证明,在产甲烷菌中存在用于 DIET 的可能外表面电接触。 有机物向甲烷的转化在全球碳循环中起着重要作用,是将废物转化为有用生物燃料的有效策略。二氧化碳还原产生的甲烷约占厌氧土壤和沉积物以及废物消化器中产生的甲烷的三分之一。二氧化碳还原的潜在电子供体是 H 或直接种间电子转移(DIET)从细菌转移到产甲烷菌的电子。由于缺乏关于产甲烷菌外表面电连接以及它们如何处理从 DIET 接收的电子的信息,因此很难确定这些电子供体的相对重要性。这里报道的转录组模式和基因缺失表型提供了对一组在土壤和沉积物中甲烷生成中起重要作用的生物体如何参与 DIET 的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd3b/8546582/6a0964f56769/mbio.02344-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验