Suppr超能文献

高盐饮食的性别特异性适应通过不同的钠转运体特征来维持电解质稳态。

Sex-specific adaptations to high-salt diet preserve electrolyte homeostasis with distinct sodium transporter profiles.

机构信息

Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, California.

出版信息

Am J Physiol Cell Physiol. 2021 Nov 1;321(5):C897-C909. doi: 10.1152/ajpcell.00282.2021. Epub 2021 Oct 6.

Abstract

Kidneys continuously filter an enormous amount of sodium and adapt kidney Na reabsorption to match Na intake to maintain circulatory volume and electrolyte homeostasis. Males (M) respond to high-salt (HS) diet by translocating proximal tubule Na/H exchanger isoform 3 (NHE3) to the base of the microvilli, reducing activated forms of the distal NaCl cotransporter (NCC) and epithelial Na channel (ENaC). Males (M) and females (F) on normal-salt (NS) diet present sex-specific profiles of "transporters" (cotransporters, channels, pumps, and claudins) along the nephron, e.g., F exhibit 40% lower NHE3 and 200% higher NCC abundance than M. We tested the hypothesis that adaptations to HS diet along the nephron will, likewise, exhibit sexual dimorphisms. C57BL/6J mice were fed for 15 days with 4% NaCl diet (HS) versus 0.26% NaCl diet (NS). On HS, M and F exhibited normal plasma [Na] and [K], similar urine volume, Na, K, and osmolal excretion rates normalized to body weight. In F, like M, HS lowered abundance of distal NCC, phosphorylated NCC, and cleaved (activated) forms of ENaC. The adaptations associated with achieving electrolyte homeostasis exhibit sex-dependent and independent mechanisms. Sex differences in baseline "transporters" abundance persist during HS diet, yet the fold changes during HS diet (normalized to NS) are similar along the distal nephron and collecting duct. Sex-dependent differences observed along the proximal tubule during HS show that female kidneys adapt differently from patterns reported in males, yet achieve and maintain fluid and electrolyte homeostasis.

摘要

肾脏不断过滤大量的钠,并调节肾脏对钠的重吸收,以使其与钠的摄入量相匹配,从而维持循环血量和电解质的平衡。雄性(M)在高盐(HS)饮食的刺激下,会将近端小管钠/氢交换体 3(NHE3)转位到微绒毛的基底,减少激活的远端 NaCl 协同转运蛋白(NCC)和上皮钠通道(ENaC)的表达。正常盐(NS)饮食下的雄性(M)和雌性(F)具有不同的“转运体”(协同转运体、通道、泵和紧密连接蛋白)特征,例如,F 中 NHE3 的丰度比 M 低 40%,而 NCC 的丰度则比 M 高 200%。我们假设,沿着肾单位的 HS 饮食适应也会表现出性别二态性。将 C57BL/6J 小鼠用 4%NaCl 饮食(HS)或 0.26%NaCl 饮食(NS)喂养 15 天。在 HS 条件下,M 和 F 的血浆[Na+]和[K+]均正常,尿量、钠、钾和渗透排泄率与体重的比值也相似。在 F 中,与 M 相似,HS 降低了远端 NCC、磷酸化 NCC 和切割(激活)形式的 ENaC 的丰度。与实现电解质平衡相关的适应具有性别依赖性和非依赖性机制。HS 饮食期间,基础“转运体”丰度的性别差异持续存在,但 HS 饮食期间的变化幅度(与 NS 相比)在整个远端肾单位和集合管中相似。HS 期间在近端小管观察到的性别依赖性差异表明,雌性肾脏的适应方式与雄性报道的模式不同,但仍能实现并维持液体和电解质的平衡。

相似文献

1
Sex-specific adaptations to high-salt diet preserve electrolyte homeostasis with distinct sodium transporter profiles.
Am J Physiol Cell Physiol. 2021 Nov 1;321(5):C897-C909. doi: 10.1152/ajpcell.00282.2021. Epub 2021 Oct 6.
2
Regulation of renal Na transporters in response to dietary K.
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F1032-F1041. doi: 10.1152/ajprenal.00117.2018. Epub 2018 Jun 20.
3
Effects of dietary salt on renal Na+ transporter subcellular distribution, abundance, and phosphorylation status.
Am J Physiol Renal Physiol. 2008 Oct;295(4):F1003-16. doi: 10.1152/ajprenal.90235.2008. Epub 2008 Jul 23.
4
Sexual Dimorphic Pattern of Renal Transporters and Electrolyte Homeostasis.
J Am Soc Nephrol. 2017 Dec;28(12):3504-3517. doi: 10.1681/ASN.2017030295. Epub 2017 Aug 3.
5
Deletion of renal Nedd4-2 abolishes the effect of high sodium intake (HS) on Kir4.1, ENaC, and NCC and causes hypokalemia during high HS.
Am J Physiol Renal Physiol. 2021 May 1;320(5):F883-F896. doi: 10.1152/ajprenal.00555.2020. Epub 2021 Apr 5.
6
Impact of angiotensin II-mediated stimulation of sodium transporters in the nephron assessed by computational modeling.
Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1656-F1668. doi: 10.1152/ajprenal.00335.2019. Epub 2019 Oct 28.
7
The salt sensitivity of Drd4-null mice is associated with the upregulations of sodium transporters in kidneys.
Hypertens Res. 2024 Aug;47(8):2144-2156. doi: 10.1038/s41440-024-01724-5. Epub 2024 May 22.
8
Adaptive changes in single-nephron GFR, tubular morphology, and transport in a pregnant rat nephron: modeling and analysis.
Am J Physiol Renal Physiol. 2022 Feb 1;322(2):F121-F137. doi: 10.1152/ajprenal.00264.2021. Epub 2021 Dec 13.
9
Local and downstream actions of proximal tubule angiotensin II signaling on Na transporters in the mouse nephron.
Am J Physiol Renal Physiol. 2021 Jul 1;321(1):F69-F81. doi: 10.1152/ajprenal.00014.2021. Epub 2021 May 31.
10
Sex difference in kidney electrolyte transport III: Impact of low K intake on thiazide-sensitive cation excretion in male and female mice.
Pflugers Arch. 2021 Nov;473(11):1749-1760. doi: 10.1007/s00424-021-02611-5. Epub 2021 Aug 29.

引用本文的文献

2
The health impacts and genetic architecture of food liking in cardio-metabolic diseases.
Nat Commun. 2025 May 23;16(1):4810. doi: 10.1038/s41467-025-59945-2.
3
Potassium supplementation and depletion during development of salt-sensitive hypertension in male and female SS rats.
JCI Insight. 2025 Apr 15;10(10). doi: 10.1172/jci.insight.181778. eCollection 2025 May 22.
4
Flow-dependent transport processes 2024: filtration, absorption, and secretion.
Am J Physiol Renal Physiol. 2025 May 1;328(5):F627-F637. doi: 10.1152/ajprenal.00303.2024. Epub 2025 Mar 17.
5
Effect of sex chromosome complement versus gonadal hormones on abundance of renal transporters.
Am J Physiol Renal Physiol. 2025 May 1;328(5):F638-F646. doi: 10.1152/ajprenal.00017.2025. Epub 2025 Mar 10.
6
Salt sensitivity of blood pressure: mechanisms and sex-specific differences.
Nat Rev Cardiol. 2025 Feb 21. doi: 10.1038/s41569-025-01135-0.
9
The role of age and sex in non-linear dilution adjustment of spot urine arsenic.
BMC Nephrol. 2024 Oct 13;25(1):348. doi: 10.1186/s12882-024-03758-w.
10
Cardiac Localized Polycystin-2 in the Natriuretic Peptide Signaling Pathway and Hypertension.
J Am Soc Nephrol. 2025 Jan 1;36(1):34-47. doi: 10.1681/ASN.0000000000000490. Epub 2024 Sep 20.

本文引用的文献

2
Moving the Needle on Hypertension: What Knowledge Is Needed?
Nutr Today. 2019 Nov-Dec;54(6):248-256. doi: 10.1097/nt.0000000000000375.
3
Renal Inflammation Induces Salt Sensitivity in Male db/db Mice through Dysregulation of ENaC.
J Am Soc Nephrol. 2021 May 3;32(5):1131-1149. doi: 10.1681/ASN.2020081112. Epub 2021 Mar 17.
4
Activation of the Sympathetic Nervous System Promotes Blood Pressure Salt-Sensitivity in C57BL6/J Mice.
Hypertension. 2021 Jan;77(1):158-168. doi: 10.1161/HYPERTENSIONAHA.120.16186. Epub 2020 Nov 16.
5
Distal convoluted tubule sexual dimorphism revealed by advanced 3D imaging.
Am J Physiol Renal Physiol. 2020 Nov 1;319(5):F754-F764. doi: 10.1152/ajprenal.00441.2020. Epub 2020 Sep 14.
6
A role for tubular Na/H exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin.
Am J Physiol Renal Physiol. 2020 Oct 1;319(4):F712-F728. doi: 10.1152/ajprenal.00264.2020. Epub 2020 Sep 7.
7
Coordinate adaptations of skeletal muscle and kidney to maintain extracellular [K] during K-deficient diet.
Am J Physiol Cell Physiol. 2020 Oct 1;319(4):C757-C770. doi: 10.1152/ajpcell.00362.2020. Epub 2020 Aug 26.
8
Report of the National Heart, Lung, and Blood Institute Working Group on Hypertension: Barriers to Translation.
Hypertension. 2020 Apr;75(4):902-917. doi: 10.1161/HYPERTENSIONAHA.119.13887. Epub 2020 Feb 17.
9
Electrolyte and transporter responses to angiotensin II induced hypertension in female and male rats and mice.
Acta Physiol (Oxf). 2020 May;229(1):e13448. doi: 10.1111/apha.13448. Epub 2020 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验