Suppr超能文献

通过溶剂催化实现含氮石墨烯量子点的结构可控生长以选择性活化C-N键

Structure-controllable growth of nitrogenated graphene quantum dots via solvent catalysis for selective C-N bond activation.

作者信息

Moon Byung Joon, Kim Sang Jin, Lee Aram, Oh Yelin, Lee Seoung-Ki, Lee Sang Hyun, Kim Tae-Wook, Hong Byung Hee, Bae Sukang

机构信息

Functional Composite Materials Research Center, Korea Institute of Science and Technology, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea.

Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

Nat Commun. 2021 Oct 7;12(1):5879. doi: 10.1038/s41467-021-26122-0.

Abstract

Photophysical and photochemical properties of graphene quantum dots (GQDs) strongly depend on their morphological and chemical features. However, systematic and uniform manipulation of the chemical structures of GQDs remains challenging due to the difficulty in simultaneous control of competitive reactions, i.e., growth and doping, and the complicated post-purification processes. Here, we report an efficient and scalable production of chemically tailored N-doped GQDs (NGs) with high uniformity and crystallinity via a simple one-step solvent catalytic reaction for the thermolytic self-assembly of molecular precursors. We find that the graphitization of N-containing precursors during the formation of NGs can be modulated by intermolecular interaction with solvent molecules, the mechanism of wh ich is evidenced by theoretical calculations and various spectroscopic analyses. Given with the excellent visible-light photoresponse and photocatalytic activity of NGs, it is expected that the proposed approach will promote the practical utilization of GQDs for various applications in the near future.

摘要

石墨烯量子点(GQDs)的光物理和光化学性质强烈依赖于它们的形态和化学特征。然而,由于难以同时控制竞争性反应(即生长和掺杂)以及复杂的后纯化过程,对GQDs化学结构进行系统且均匀的调控仍然具有挑战性。在此,我们报道了一种通过简单的一步溶剂催化反应实现分子前驱体热解自组装,从而高效且可扩展地制备具有高均匀性和结晶度的化学定制氮掺杂GQDs(NGs)的方法。我们发现,在NGs形成过程中含氮前驱体的石墨化可以通过与溶剂分子的分子间相互作用进行调控,理论计算和各种光谱分析证明了其作用机制。鉴于NGs具有优异的可见光光响应和光催化活性,预计所提出的方法将在不久的将来促进GQDs在各种应用中的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a773/8497556/fcc7cc3a018f/41467_2021_26122_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验