Suppr超能文献

在人类枕叶皮层插入的 96 通道皮层内微电极阵列所引发的视觉知觉。

Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex.

机构信息

Bioengineering Institute and Cátedra Bidons Egara, University Miguel Hernández, Elche, Spain.

CIBER Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain.

出版信息

J Clin Invest. 2021 Dec 1;131(23). doi: 10.1172/JCI151331.

Abstract

BACKGROUNDA long-held goal of vision therapy is to transfer information directly to the visual cortex of blind individuals, thereby restoring a rudimentary form of sight. However, no clinically available cortical visual prosthesis yet exists.METHODSWe implanted an intracortical microelectrode array consisting of 96 electrodes in the visual cortex of a 57-year-old person with complete blindness for a 6-month period. We measured thresholds and the characteristics of the visual percepts elicited by intracortical microstimulation.RESULTSImplantation and subsequent explantation of intracortical microelectrodes were carried out without complications. The mean stimulation threshold for single electrodes was 66.8 ± 36.5 μA. We consistently obtained high-quality recordings from visually deprived neurons and the stimulation parameters remained stable over time. Simultaneous stimulation via multiple electrodes was associated with a significant reduction in thresholds (P < 0.001, ANOVA) and evoked discriminable phosphene percepts, allowing the blind participant to identify some letters and recognize object boundaries.CONCLUSIONSOur results demonstrate the safety and efficacy of chronic intracortical microstimulation via a large number of electrodes in human visual cortex, showing its high potential for restoring functional vision in the blind.TRIAL REGISTRATIONClinicalTrials.gov identifier NCT02983370.FUNDINGThe Spanish Ministerio de Ciencia Innovación y Universidades, the Generalitat Valenciana (Spain), the Europan Union's Horizon 2020 programme, the Bidons Egara Research Chair of the University Miguel Hernández (Spain), and the John Moran Eye Center of the University of Utah.

摘要

背景

视知觉疗法的长期目标是将信息直接传递到盲人的视觉皮层,从而恢复基本的视觉。然而,目前还没有临床可用的皮层视觉假体。

方法

我们将一个由 96 个电极组成的皮层内微电极阵列植入一名 57 岁完全失明患者的视觉皮层,植入时间为 6 个月。我们测量了皮层内微刺激引起的阈值和视觉感知特征。

结果

皮层内微电极的植入和随后的取出均无并发症。单个电极的平均刺激阈值为 66.8 ± 36.5 μA。我们始终从视觉剥夺神经元中获得高质量的记录,并且刺激参数随时间保持稳定。通过多个电极的同时刺激与阈值的显著降低(P < 0.001,方差分析)相关,并引起可区分的闪光感知,使盲人参与者能够识别一些字母并识别物体边界。

结论

我们的结果证明了通过大量电极在人类视觉皮层中进行慢性皮层内微刺激的安全性和有效性,表明其在恢复盲人功能性视力方面具有很高的潜力。

试验注册

ClinicalTrials.gov 标识符 NCT02983370。

资金

西班牙科学创新与大学部、瓦伦西亚大区(西班牙)、欧盟地平线 2020 计划、Bidons Egara 研究主席(西班牙)和犹他大学约翰·莫兰眼中心。

相似文献

4
Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans.
Cell. 2020 May 14;181(4):774-783.e5. doi: 10.1016/j.cell.2020.04.033.
5
Eye movements and the perceived location of phosphenes generated by intracranial primary visual cortex stimulation in the blind.
Brain Stimul. 2021 Jul-Aug;14(4):851-860. doi: 10.1016/j.brs.2021.04.019. Epub 2021 May 13.
7
Chronic stability of a neuroprosthesis comprising multiple adjacent Utah arrays in monkeys.
J Neural Eng. 2023 Jun 30;20(3):036039. doi: 10.1088/1741-2552/ace07e.
9
Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics.
Annu Rev Vis Sci. 2017 Sep 15;3:141-166. doi: 10.1146/annurev-vision-111815-114525. Epub 2017 Jul 28.

引用本文的文献

1
Visual Prostheses in the Era of Artificial Intelligence Technology.
Eye Brain. 2025 Aug 29;17:95-113. doi: 10.2147/EB.S524322. eCollection 2025.
2
Intracortical microstimulation in humans: a decade of safety and efficacy.
medRxiv. 2025 Aug 13:2025.08.11.25332271. doi: 10.1101/2025.08.11.25332271.
3
Towards Precise Synthetic Neural Codes: High-dimensional Stimulation with Flexible Electrodes.
Npj Flex Electron. 2025;9(1). doi: 10.1038/s41528-025-00447-y. Epub 2025 Jul 14.
5
Spatiotemporal properties of cortical excitatory and inhibitory neuron activation by sustained and bursting electrical microstimulation.
iScience. 2025 May 20;28(6):112707. doi: 10.1016/j.isci.2025.112707. eCollection 2025 Jun 20.
6
Artificial intelligence-powered smart vision glasses for the visually impaired.
Indian J Ophthalmol. 2025 Jun 1;73(Suppl 3):S492-S497. doi: 10.4103/IJO.IJO_1621_24. Epub 2025 May 30.
7
The Role of Scalp EEG Recordings During Cortical Visual Prosthesis Testing.
Artif Organs. 2025 May 27. doi: 10.1111/aor.15023.
8
Tackling visual impairment: emerging avenues in ophthalmology.
Front Med (Lausanne). 2025 Apr 28;12:1567159. doi: 10.3389/fmed.2025.1567159. eCollection 2025.
9
Electrode Arrays for Detecting and Modulating Deep Brain Neural Information in Primates: A Review.
Cyborg Bionic Syst. 2025 May 2;6:0249. doi: 10.34133/cbsystems.0249. eCollection 2025.
10
Recent applications of EEG-based brain-computer-interface in the medical field.
Mil Med Res. 2025 Mar 24;12(1):14. doi: 10.1186/s40779-025-00598-z.

本文引用的文献

1
High-performance brain-to-text communication via handwriting.
Nature. 2021 May;593(7858):249-254. doi: 10.1038/s41586-021-03506-2. Epub 2021 May 12.
2
Home Use of a Percutaneous Wireless Intracortical Brain-Computer Interface by Individuals With Tetraplegia.
IEEE Trans Biomed Eng. 2021 Jul;68(7):2313-2325. doi: 10.1109/TBME.2021.3069119. Epub 2021 Jun 17.
3
Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex.
Science. 2020 Dec 4;370(6521):1191-1196. doi: 10.1126/science.abd7435.
5
Toward Long-Term Communication With the Brain in the Blind by Intracortical Stimulation: Challenges and Future Prospects.
Front Neurosci. 2020 Aug 11;14:681. doi: 10.3389/fnins.2020.00681. eCollection 2020.
6
Neurolight: A Deep Learning Neural Interface for Cortical Visual Prostheses.
Int J Neural Syst. 2020 Sep;30(9):2050045. doi: 10.1142/S0129065720500458. Epub 2020 Jul 21.
7
Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans.
Cell. 2020 May 14;181(4):774-783.e5. doi: 10.1016/j.cell.2020.04.033.
8
Writing to the Mind's Eye of the Blind.
Cell. 2020 May 14;181(4):758-759. doi: 10.1016/j.cell.2020.03.014.
9
Development of visual Neuroprostheses: trends and challenges.
Bioelectron Med. 2018 Aug 13;4:12. doi: 10.1186/s42234-018-0013-8. eCollection 2018.
10
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验