Suppr超能文献

低血糖生成饮食通过改变脂代谢影响肿瘤生长。

Low glycaemic diets alter lipid metabolism to influence tumour growth.

机构信息

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

出版信息

Nature. 2021 Nov;599(7884):302-307. doi: 10.1038/s41586-021-04049-2. Epub 2021 Oct 20.

Abstract

Dietary interventions can change metabolite levels in the tumour microenvironment, which might then affect cancer cell metabolism to alter tumour growth. Although caloric restriction (CR) and a ketogenic diet (KD) are often thought to limit tumour progression by lowering blood glucose and insulin levels, we found that only CR inhibits the growth of select tumour allografts in mice, suggesting that other mechanisms contribute to tumour growth inhibition. A change in nutrient availability observed with CR, but not with KD, is lower lipid levels in the plasma and tumours. Upregulation of stearoyl-CoA desaturase (SCD), which synthesises monounsaturated fatty acids, is required for cancer cells to proliferate in a lipid-depleted environment, and CR also impairs tumour SCD activity to cause an imbalance between unsaturated and saturated fatty acids to slow tumour growth. Enforcing cancer cell SCD expression or raising circulating lipid levels through a higher-fat CR diet confers resistance to the effects of CR. By contrast, although KD also impairs tumour SCD activity, KD-driven increases in lipid availability maintain the unsaturated to saturated fatty acid ratios in tumours, and changing the KD fat composition to increase tumour saturated fatty acid levels cooperates with decreased tumour SCD activity to slow tumour growth. These data suggest that diet-induced mismatches between tumour fatty acid desaturation activity and the availability of specific fatty acid species determine whether low glycaemic diets impair tumour growth.

摘要

饮食干预可以改变肿瘤微环境中的代谢物水平,进而影响癌细胞代谢,从而改变肿瘤生长。尽管热量限制(CR)和生酮饮食(KD)通常被认为通过降低血糖和胰岛素水平来限制肿瘤进展,但我们发现只有 CR 能抑制小鼠中特定肿瘤同种异体移植物的生长,这表明其他机制也有助于抑制肿瘤生长。CR 观察到的营养供应变化,而 KD 则没有,即血浆和肿瘤中的脂质水平降低。硬脂酰辅酶 A 去饱和酶(SCD)的上调是癌细胞在脂质缺乏环境中增殖所必需的,CR 还会损害肿瘤 SCD 活性,导致不饱和和饱和脂肪酸之间的不平衡,从而减缓肿瘤生长。通过高脂肪 CR 饮食强制表达癌细胞 SCD 或提高循环脂质水平会赋予癌细胞对 CR 作用的抗性。相比之下,尽管 KD 也会损害肿瘤 SCD 活性,但 KD 驱动的脂质可用性增加会维持肿瘤中不饱和与饱和脂肪酸的比例,并且将 KD 脂肪成分改变为增加肿瘤饱和脂肪酸水平与降低肿瘤 SCD 活性协同作用,从而减缓肿瘤生长。这些数据表明,饮食诱导的肿瘤脂肪酸去饱和活性与特定脂肪酸种类的可用性之间的不匹配决定了低糖血症饮食是否会损害肿瘤生长。

相似文献

1
Low glycaemic diets alter lipid metabolism to influence tumour growth.
Nature. 2021 Nov;599(7884):302-307. doi: 10.1038/s41586-021-04049-2. Epub 2021 Oct 20.
4
Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy.
Mol Cancer Res. 2011 Nov;9(11):1551-61. doi: 10.1158/1541-7786.MCR-11-0126. Epub 2011 Sep 27.
7
SCD1 activity in muscle increases triglyceride PUFA content, exercise capacity, and PPARδ expression in mice.
J Lipid Res. 2013 Oct;54(10):2636-46. doi: 10.1194/jlr.M035865. Epub 2013 Aug 5.
8
Hepatic stearoyl CoA desaturase 1 deficiency increases glucose uptake in adipose tissue partially through the PGC-1α-FGF21 axis in mice.
J Biol Chem. 2019 Dec 20;294(51):19475-19485. doi: 10.1074/jbc.RA119.009868. Epub 2019 Nov 5.
9
Stearoyl-CoA desaturase: a vital checkpoint in the development and progression of obesity.
Endocr Metab Immune Disord Drug Targets. 2011 Sep 1;11(3):217-31. doi: 10.2174/187153011796429826.
10
Omega-3 fatty acid deficiency increases stearoyl-CoA desaturase expression and activity indices in rat liver: positive association with non-fasting plasma triglyceride levels.
Prostaglandins Leukot Essent Fatty Acids. 2012 Jan-Feb;86(1-2):71-7. doi: 10.1016/j.plefa.2011.10.003. Epub 2011 Nov 1.

引用本文的文献

2
A survival prediction model for biliary tract cancer based on least absolute shrinkage and selection operator-cox regression.
Ann Med. 2025 Dec;57(1):2555520. doi: 10.1080/07853890.2025.2555520. Epub 2025 Sep 3.
3
The source of dietary fat influences anti-tumour immunity in obese mice.
Nat Metab. 2025 Jul 25. doi: 10.1038/s42255-025-01330-w.
4
What's on the menu?: metabolic constraints in the pancreatic tumor microenvironment.
J Clin Invest. 2025 Jul 15;135(14). doi: 10.1172/JCI191940.
5
Histone serotonylation promotes pancreatic cancer development via lipid metabolism remodeling.
Nat Commun. 2025 Jul 1;16(1):5947. doi: 10.1038/s41467-025-61197-z.
6
The role of SIRT1 in the development of gastrointestinal tumors.
Front Cell Dev Biol. 2025 Jun 11;13:1606530. doi: 10.3389/fcell.2025.1606530. eCollection 2025.
7
The Critical Role of Adipocytes in Leukemia.
Biology (Basel). 2025 May 28;14(6):624. doi: 10.3390/biology14060624.
10
Metabolic reprogramming and therapeutic targeting in non-small cell lung cancer: emerging insights beyond the Warburg effect.
Front Oncol. 2025 May 21;15:1564226. doi: 10.3389/fonc.2025.1564226. eCollection 2025.

本文引用的文献

1
Preparation of Lipid-Stripped Serum for the Study of Lipid Metabolism in Cell Culture.
Bio Protoc. 2018 Jun 5;8(11):e2876. doi: 10.21769/BioProtoc.2876.
3
Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation.
Nat Metab. 2019 Sep;1(9):861-867. doi: 10.1038/s42255-019-0108-x. Epub 2019 Sep 16.
4
A framework for examining how diet impacts tumour metabolism.
Nat Rev Cancer. 2019 Nov;19(11):651-661. doi: 10.1038/s41568-019-0198-5. Epub 2019 Sep 17.
5
Dietary methionine influences therapy in mouse cancer models and alters human metabolism.
Nature. 2019 Aug;572(7769):397-401. doi: 10.1038/s41586-019-1437-3. Epub 2019 Jul 31.
7
Increased Serine Synthesis Provides an Advantage for Tumors Arising in Tissues Where Serine Levels Are Limiting.
Cell Metab. 2019 Jun 4;29(6):1410-1421.e4. doi: 10.1016/j.cmet.2019.02.015. Epub 2019 Mar 21.
8
Probing the Global Cellular Responses to Lipotoxicity Caused by Saturated Fatty Acids.
Mol Cell. 2019 Apr 4;74(1):32-44.e8. doi: 10.1016/j.molcel.2019.01.036. Epub 2019 Mar 4.
9
Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity.
Nature. 2019 Feb;566(7744):403-406. doi: 10.1038/s41586-019-0904-1. Epub 2019 Feb 6.
10
Polyunsaturated Fatty Acid Desaturation Is a Mechanism for Glycolytic NAD Recycling.
Cell Metab. 2019 Apr 2;29(4):856-870.e7. doi: 10.1016/j.cmet.2018.12.023. Epub 2019 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验