Suppr超能文献

通过多方面的信息阐明 1 型糖尿病异质性的多维性。

Elucidate multidimensionality of type 1 diabetes mellitus heterogeneity by multifaceted information.

机构信息

Department of Psychiatry, Mackay Memorial Hospital, Taitung, Taiwan.

Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.

出版信息

Sci Rep. 2021 Oct 25;11(1):20965. doi: 10.1038/s41598-021-00388-2.

Abstract

Type 1 diabetes (T1D) is an autoimmune disease. Different factors, including genetics and viruses may contribute to T1D, but the causes of T1D are not fully known, and there is currently no cure. The advent of high-throughput technologies has revolutionized the field of medicine and biology, and analysis of multi-source data along with clinical information has brought a better understanding of the mechanisms behind disease pathogenesis. The aim of this work was the development of a data repository linking clinical information and interactome studies in T1D. To address this goal, we analyzed the electronic health records and online databases of genes, proteins, miRNAs, and pathways to have a global view of T1D. There were common comorbid diseases such as anemia, hypertension, vitreous diseases, renal diseases, and atherosclerosis in the phenotypic disease networks. In the protein-protein interaction network, CASP3 and TNF were date-hub proteins involved in several pathways. Moreover, CTNNB1, IGF1R, and STAT3 were hub proteins, whereas miR-155-5p, miR-34a-5p, miR-23-3p, and miR-20a-5p were hub miRNAs in the gene-miRNA interaction network. Multiple levels of information including genetic, protein, miRNA and clinical data resulted in multiple results, which suggests the complementarity of multiple sources. With the integration of multifaceted information, it will shed light on the mechanisms underlying T1D; the provided data and repository has utility in understanding phenotypic disease networks for the potential development of comorbidities in T1D patients as well as the clues for further research on T1D comorbidities.

摘要

1 型糖尿病(T1D)是一种自身免疫性疾病。包括遗传和病毒在内的不同因素可能导致 T1D,但 T1D 的病因尚未完全清楚,目前尚无治愈方法。高通量技术的出现彻底改变了医学和生物学领域,对多源数据和临床信息的分析使人们对疾病发病机制背后的机制有了更好的理解。这项工作的目的是开发一个将临床信息与 T1D 中的相互作用组研究联系起来的数据库。为了实现这一目标,我们分析了电子健康记录和基因、蛋白质、miRNA 和途径的在线数据库,以全面了解 T1D。表型疾病网络中存在贫血、高血压、玻璃体疾病、肾脏疾病和动脉粥样硬化等常见合并症。在蛋白质-蛋白质相互作用网络中,CASP3 和 TNF 是涉及多个途径的日期中心蛋白。此外,CTNNB1、IGF1R 和 STAT3 是枢纽蛋白,而 miR-155-5p、miR-34a-5p、miR-23-3p 和 miR-20a-5p 是基因-miRNA 相互作用网络中的枢纽 miRNA。包括遗传、蛋白质、miRNA 和临床数据在内的多个层次的信息产生了多个结果,这表明多个来源的互补性。通过整合多方面的信息,将揭示 T1D 的发病机制;提供的数据和存储库可用于理解表型疾病网络,为 T1D 患者的合并症的潜在发展以及对 T1D 合并症的进一步研究提供线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a350/8545927/db7f253f4285/41598_2021_388_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验