Suppr超能文献

2010 年至 2020 年医学机器人研究的十年回顾。

A decade retrospective of medical robotics research from 2010 to 2020.

机构信息

Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH-Zürich, Zürich, Switzerland.

出版信息

Sci Robot. 2021 Nov 10;6(60):eabi8017. doi: 10.1126/scirobotics.abi8017.

Abstract

Robotics is a forward-looking discipline. Attention is focused on identifying the next grand challenges. In an applied field such as medical robotics, however, it is important to plan the future based on a clear understanding of what the research community has recently accomplished and where this work stands with respect to clinical needs and commercialization. This Review article identifies and analyzes the eight key research themes in medical robotics over the past decade. These thematic areas were identified using search criteria that identified the most highly cited papers of the decade. Our goal for this Review article is to provide an accessible way for readers to quickly appreciate some of the most exciting accomplishments in medical robotics over the past decade; for this reason, we have focused only on a small number of seminal papers in each thematic area. We hope that this article serves to foster an entrepreneurial spirit in researchers to reduce the widening gap between research and translation.

摘要

机器人技术是一门前瞻性学科。人们关注的焦点是确定下一个重大挑战。然而,在医学机器人等应用领域,根据对研究社区最近完成的工作以及这些工作在临床需求和商业化方面的地位的清晰了解来规划未来是很重要的。本文综述确定并分析了过去十年中医学机器人的八个关键研究主题。这些主题领域是使用能够识别该十年中被引用最多的论文的搜索标准确定的。我们撰写本文的目的是为读者提供一种便捷的方式,让他们快速了解过去十年中医学机器人领域最令人兴奋的一些成就;出于这个原因,我们在每个主题领域仅关注少数几篇开创性的论文。我们希望本文能够激发研究人员的创业精神,缩小研究与转化之间日益扩大的差距。

相似文献

1
A decade retrospective of medical robotics research from 2010 to 2020.
Sci Robot. 2021 Nov 10;6(60):eabi8017. doi: 10.1126/scirobotics.abi8017.
2
Robotics in neurosurgery: state of the art and future technological challenges.
Int J Med Robot. 2004 Jun;1(1):7-22. doi: 10.1002/rcs.2.
3
Laparoscopy & robotics: a historical parallel.
Rev Col Bras Cir. 2020 Nov 23;47:e20202811. doi: 10.1590/0100-6991e-20202811. eCollection 2020.
4
Frontiers of Medical Robotics: From Concept to Systems to Clinical Translation.
Annu Rev Biomed Eng. 2019 Jun 4;21:193-218. doi: 10.1146/annurev-bioeng-060418-052502. Epub 2019 Mar 1.
5
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
The Progression of Regenerative Medicine and its Impact on Therapy Translation.
Clin Transl Sci. 2020 May;13(3):440-450. doi: 10.1111/cts.12736. Epub 2020 Feb 6.
7
[Robotic surgery: history and teaching impact].
Actas Urol Esp. 2011 Oct;35(9):540-5. doi: 10.1016/j.acuro.2011.04.005. Epub 2011 Jun 22.
8
Future Platforms of Robotic Surgery.
Urol Clin North Am. 2022 Feb;49(1):23-38. doi: 10.1016/j.ucl.2021.07.008. Epub 2021 Oct 25.
9
State of the art in surgical robotics: clinical applications and technology challenges.
Comput Aided Surg. 2001;6(6):312-28. doi: 10.1002/igs.10019.
10
The history of robotics in urology.
World J Urol. 2006 Jun;24(2):120-7. doi: 10.1007/s00345-006-0067-1. Epub 2006 Mar 22.

引用本文的文献

1
Model-based Parameter Selection for a Steerable Continuum Robot - Applications to Bronchoalveolar Lavage (BAL).
IEEE Robot Autom Lett. 2025 Jan;10(1):414-420. doi: 10.1109/lra.2024.3497652. Epub 2024 Nov 13.
2
A Low-Friction Capsule Robot with Drive-Control-Sensing Integration for Gastrointestinal Lesion Detection.
Research (Wash D C). 2025 Aug 4;8:0807. doi: 10.34133/research.0807. eCollection 2025.
3
Advancements in robotic surgery for vitreoretinal diseases: current trends and the future.
Jpn J Ophthalmol. 2025 Jul;69(4):483-494. doi: 10.1007/s10384-025-01231-1. Epub 2025 Aug 1.
5
Magnetic Cell-Mimetic Droplet Microrobots with Division and Exocytosis Capabilities.
Research (Wash D C). 2025 Jun 3;8:0730. doi: 10.34133/research.0730. eCollection 2025.
8
Materials Advances in Devices for Heart Disease Interventions.
Adv Mater. 2025 Jul;37(27):e2420114. doi: 10.1002/adma.202420114. Epub 2025 Apr 17.
9
Intuition-guided Reinforcement Learning for Soft Tissue Manipulation with Unknown Constraints.
Cyborg Bionic Syst. 2025 Apr 14;6:0114. doi: 10.34133/cbsystems.0114. eCollection 2025.
10
Design and evaluation of new user control devices for improved ergonomics in flexible robotic endoscopy.
Front Robot AI. 2025 Mar 24;12:1559574. doi: 10.3389/frobt.2025.1559574. eCollection 2025.

本文引用的文献

1
In vivo tissue regeneration with robotic implants.
Sci Robot. 2018 Jan 10;3(14). doi: 10.1126/scirobotics.aaq0018.
2
Ferromagnetic soft continuum robots.
Sci Robot. 2019 Aug 28;4(33). doi: 10.1126/scirobotics.aax7329.
4
First-in-human study of the safety and viability of intraocular robotic surgery.
Nat Biomed Eng. 2018 Jun 18;2:649-656. doi: 10.1038/s41551-018-0248-4.
6
Small-scale soft-bodied robot with multimodal locomotion.
Nature. 2018 Feb 1;554(7690):81-85. doi: 10.1038/nature25443. Epub 2018 Jan 24.
7
Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery.
Int J Med Robot. 2018 Feb;14(1). doi: 10.1002/rcs.1875. Epub 2017 Dec 5.
8
An Implantable Extracardiac Soft Robotic Device for the Failing Heart: Mechanical Coupling and Synchronization.
Soft Robot. 2017 Sep;4(3):241-250. doi: 10.1089/soro.2016.0076. Epub 2017 May 30.
10
DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling.
Science. 2017 Sep 15;357(6356):1126-1130. doi: 10.1126/science.aan3925.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验