Suppr超能文献

VE-钙黏蛋白对于心脏淋巴管的维持和信号传递是必需的。

VE-Cadherin Is Required for Cardiac Lymphatic Maintenance and Signaling.

机构信息

Department of Cell Biology and Physiology (N.R.H., N.R.N., J.B.P., K.R., D.S.S., D.M.D., N.P.N.-M., W.X., D.R., S.H.H., K.M.C.), University of North Carolina at Chapel Hill.

Department of Medicine Division of Cardiology (A.A.), University of North Carolina at Chapel Hill.

出版信息

Circ Res. 2022 Jan 7;130(1):5-23. doi: 10.1161/CIRCRESAHA.121.318852. Epub 2021 Nov 18.

Abstract

BACKGROUND

The adherens protein VE-cadherin (vascular endothelial cadherin) has diverse roles in organ-specific lymphatic vessels. However, its physiological role in cardiac lymphatics and its interaction with lymphangiogenic factors has not been fully explored. We sought to determine the spatiotemporal functions of VE-cadherin in cardiac lymphatics and mechanistically elucidate how VE-cadherin loss influences prolymphangiogenic signaling pathways, such as adrenomedullin and VEGF (vascular endothelial growth factor)-C/VEGFR3 (vascular endothelial growth factor receptor 3) signaling.

METHODS

mice were used to delete VE-cadherin in lymphatic endothelial cells across life stages, including embryonic, postnatal, and adult. Lymphatic architecture and function was characterized using immunostaining and functional lymphangiography. To evaluate the impact of temporal and functional regression of cardiac lymphatics in mice, left anterior descending artery ligation was performed and cardiac function and repair after myocardial infarction was evaluated by echocardiography and histology. Cellular effects of VE-cadherin deletion on lymphatic signaling pathways were assessed by knockdown of VE-cadherin in cultured lymphatic endothelial cells.

RESULTS

Embryonic deletion of VE-cadherin produced edematous embryos with dilated cardiac lymphatics with significantly altered vessel tip morphology. Postnatal deletion of VE-cadherin caused complete disassembly of cardiac lymphatics. Adult deletion caused a temporal regression of the quiescent epicardial lymphatic network which correlated with significant dermal and cardiac lymphatic dysfunction, as measured by fluorescent and quantum dot lymphangiography, respectively. Surprisingly, despite regression of cardiac lymphatics, mice exhibited preserved cardiac function, both at baseline and following myocardial infarction, compared with control mice. Mechanistically, loss of VE-cadherin leads to aberrant cellular internalization of VEGFR3, precluding the ability of VEGFR3 to be either canonically activated by VEGF-C or noncanonically transactivated by adrenomedullin signaling, impairing downstream processes such as cellular proliferation.

CONCLUSIONS

VE-cadherin is an essential scaffolding protein to maintain prolymphangiogenic signaling nodes at the plasma membrane, which are required for the development and adult maintenance of cardiac lymphatics, but not for cardiac function basally or after injury.

摘要

背景

黏附蛋白 VE-钙黏蛋白(血管内皮钙黏蛋白)在器官特异性淋巴管中具有多种功能。然而,其在心脏淋巴管中的生理作用及其与淋巴管生成因子的相互作用尚未得到充分探索。我们试图确定 VE-钙黏蛋白在心脏淋巴管中的时空功能,并从机制上阐明 VE-钙黏蛋白缺失如何影响脯氨酰淋巴管生成信号通路,如肾上腺髓质素和 VEGF(血管内皮生长因子)-C/VEGFR3(血管内皮生长因子受体 3)信号通路。

方法

使用小鼠在整个生命阶段(包括胚胎期、出生后和成年期)删除淋巴管内皮细胞中的 VE-钙黏蛋白。通过免疫染色和功能性淋巴管造影术来描述淋巴管结构和功能。为了评估 小鼠心脏淋巴管的时空和功能性退化的影响,进行了左前降支结扎,并通过超声心动图和组织学评估心肌梗死后的心脏功能和修复。通过在培养的淋巴管内皮细胞中敲低 VE-钙黏蛋白来评估 VE-钙黏蛋白缺失对淋巴管信号通路的细胞效应。

结果

胚胎期 VE-钙黏蛋白缺失导致胚胎水肿,心脏淋巴管扩张,血管尖端形态明显改变。出生后 VE-钙黏蛋白缺失导致心脏淋巴管完全解体。成年期 VE-钙黏蛋白缺失导致静止的心外膜淋巴管网络暂时退化,这与荧光和量子点淋巴管造影术分别测量的明显真皮和心脏淋巴管功能障碍相关。令人惊讶的是,尽管心脏淋巴管退化,与对照组小鼠相比, 小鼠在基础状态和心肌梗死后均表现出保留的心脏功能。从机制上讲,VE-钙黏蛋白的缺失导致 VEGFR3 的异常细胞内化,从而阻止了 VEGFR3 被 VEGF-C 经典激活或被肾上腺髓质素信号非经典转激活,从而损害了细胞增殖等下游过程。

结论

VE-钙黏蛋白是维持质膜脯氨酰淋巴管生成信号节点的必需支架蛋白,对于心脏淋巴管的发育和成年维持是必需的,但对于基础状态或损伤后的心脏功能不是必需的。

相似文献

1
VE-Cadherin Is Required for Cardiac Lymphatic Maintenance and Signaling.
Circ Res. 2022 Jan 7;130(1):5-23. doi: 10.1161/CIRCRESAHA.121.318852. Epub 2021 Nov 18.
2
Distinct roles of VE-cadherin for development and maintenance of specific lymph vessel beds.
EMBO J. 2018 Nov 15;37(22). doi: 10.15252/embj.201798271. Epub 2018 Oct 8.
3
VE-Cadherin Is Required for Lymphatic Valve Formation and Maintenance.
Cell Rep. 2019 Aug 27;28(9):2397-2412.e4. doi: 10.1016/j.celrep.2019.07.072.
4
VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling.
Circ Res. 2017 Apr 28;120(9):1414-1425. doi: 10.1161/CIRCRESAHA.116.310477. Epub 2017 Mar 15.
6
Sinusoidal and lymphatic vessel growth is controlled by reciprocal VEGF-C-CDH5 inhibition.
Nat Cardiovasc Res. 2022 Nov;1(11):1006-1021. doi: 10.1038/s44161-022-00147-0. Epub 2022 Nov 11.
8
Vascular endothelial growth factor C disrupts the endothelial lymphatic barrier to promote colorectal cancer invasion.
Gastroenterology. 2015 Jun;148(7):1438-51.e8. doi: 10.1053/j.gastro.2015.03.005. Epub 2015 Mar 6.
9
Molecular controls of lymphatic VEGFR3 signaling.
Arterioscler Thromb Vasc Biol. 2015 Feb;35(2):421-9. doi: 10.1161/ATVBAHA.114.304881. Epub 2014 Dec 18.

引用本文的文献

1
Role of meningeal lymphatic vessels in brain homeostasis.
Front Immunol. 2025 Jun 19;16:1593630. doi: 10.3389/fimmu.2025.1593630. eCollection 2025.
2
Lymphatic Activation of ACKR3 Signaling Regulates Lymphatic Response After Ischemic Heart Injury.
Arterioscler Thromb Vasc Biol. 2025 May;45(5):754-768. doi: 10.1161/ATVBAHA.124.322288. Epub 2025 Mar 27.
3
Exercise-Induced Cardiac Lymphatic Remodeling Mitigates Inflammation in the Aging Heart.
Aging Cell. 2025 Jun;24(6):e70043. doi: 10.1111/acel.70043. Epub 2025 Mar 13.
4
Regulation of VEGFR3 signaling in lymphatic endothelial cells.
Front Cell Dev Biol. 2025 Feb 13;13:1527971. doi: 10.3389/fcell.2025.1527971. eCollection 2025.
5
Cardiac lymphatics undergo distinct remodeling during hypertrophic and nonhypertrophic pregnancy.
Am J Physiol Heart Circ Physiol. 2024 Nov 1;327(5):H1155-H1161. doi: 10.1152/ajpheart.00459.2024. Epub 2024 Sep 13.
8
Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets.
Signal Transduct Target Ther. 2024 Jan 3;9(1):9. doi: 10.1038/s41392-023-01723-x.
9
Hyaluronic Acid Hydrogels with Phototunable Supramolecular Cross-Linking for Spatially Controlled Lymphatic Tube Formation.
ACS Appl Mater Interfaces. 2023 Dec 20;15(50):58181-58195. doi: 10.1021/acsami.3c12514. Epub 2023 Dec 8.
10
Immunomodulatory properties of the lymphatic endothelium in the tumor microenvironment.
Front Immunol. 2023 Sep 7;14:1235812. doi: 10.3389/fimmu.2023.1235812. eCollection 2023.

本文引用的文献

2
Lymphoangiocrine signals promote cardiac growth and repair.
Nature. 2020 Dec;588(7839):705-711. doi: 10.1038/s41586-020-2998-x. Epub 2020 Dec 9.
3
A dual role for Tbx1 in cardiac lymphangiogenesis through genetic interaction with Vegfr3.
FASEB J. 2020 Nov;34(11):15062-15079. doi: 10.1096/fj.201902202R. Epub 2020 Sep 20.
4
Lymphatic Function and Dysfunction in the Context of Sex Differences.
ACS Pharmacol Transl Sci. 2019 Sep 9;2(5):311-324. doi: 10.1021/acsptsci.9b00051. eCollection 2019 Oct 11.
5
A murine model of increased coronary sinus pressure induces myocardial edema with cardiac lymphatic dilation and fibrosis.
Am J Physiol Heart Circ Physiol. 2020 Apr 1;318(4):H895-H907. doi: 10.1152/ajpheart.00436.2019. Epub 2020 Mar 6.
6
A Second Heart Field-Derived Vasculogenic Niche Contributes to Cardiac Lymphatics.
Dev Cell. 2020 Feb 10;52(3):350-363.e6. doi: 10.1016/j.devcel.2019.12.006. Epub 2020 Jan 9.
7
Formation and Growth of Cardiac Lymphatics during Embryonic Development, Heart Regeneration, and Disease.
Cold Spring Harb Perspect Biol. 2020 Jun 1;12(6):a037176. doi: 10.1101/cshperspect.a037176.
10
New insights about the lymphatic vasculature in cardiovascular diseases.
F1000Res. 2019 Oct 29;8. doi: 10.12688/f1000research.20107.1. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验