Suppr超能文献

SCYN:一种使用动态规划进行单细胞 CNV 分析的方法。

SCYN: single cell CNV profiling method using dynamic programming.

机构信息

School of Software, Northwestern Polytechnical University, Xi'an Shaanxi, 710072, China.

Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

出版信息

BMC Genomics. 2021 Nov 16;22(Suppl 5):651. doi: 10.1186/s12864-021-07941-3.

Abstract

BACKGROUND

Copy number variation is crucial in deciphering the mechanism and cure of complex disorders and cancers. The recent advancement of scDNA sequencing technology sheds light upon addressing intratumor heterogeneity, detecting rare subclones, and reconstructing tumor evolution lineages at single-cell resolution. Nevertheless, the current circular binary segmentation based approach proves to fail to efficiently and effectively identify copy number shifts on some exceptional trails.

RESULTS

Here, we propose SCYN, a CNV segmentation method powered with dynamic programming. SCYN resolves the precise segmentation on in silico dataset. Then we verified SCYN manifested accurate copy number inferring on triple negative breast cancer scDNA data, with array comparative genomic hybridization results of purified bulk samples as ground truth validation. We tested SCYN on two datasets of the newly emerged 10x Genomics CNV solution. SCYN successfully recognizes gastric cancer cells from 1% and 10% spike-ins 10x datasets. Moreover, SCYN is about 150 times faster than state of the art tool when dealing with the datasets of approximately 2000 cells.

CONCLUSIONS

SCYN robustly and efficiently detects segmentations and infers copy number profiles on single cell DNA sequencing data. It serves to reveal the tumor intra-heterogeneity. The source code of SCYN can be accessed in https://github.com/xikanfeng2/SCYN .

摘要

背景

拷贝数变异对于解析复杂疾病和癌症的机制和治疗方法至关重要。最近 scDNA 测序技术的进步为解决肿瘤内异质性、检测罕见亚克隆以及在单细胞分辨率下重建肿瘤进化谱系提供了新的思路。然而,目前基于环形二进制分割的方法在某些特殊情况下证明无法有效地识别拷贝数变化。

结果

在这里,我们提出了一种基于动态规划的 CNV 分割方法 SCYN。SCYN 可以在模拟数据集上进行精确的分割。然后,我们通过将纯化的 bulk 样本的阵列比较基因组杂交结果作为地面真实验证,验证了 SCYN 在三阴性乳腺癌 scDNA 数据上进行准确的拷贝数推断的能力。我们在新出现的 10x Genomics CNV 解决方案的两个数据集上测试了 SCYN。SCYN 可以成功地从 1%和 10%的 spike-in 10x 数据集识别胃癌细胞。此外,当处理大约 2000 个细胞的数据集时,SCYN 的速度比最先进的工具快约 150 倍。

结论

SCYN 可以在单细胞 DNA 测序数据上稳健高效地检测分割并推断拷贝数谱。它可以揭示肿瘤内异质性。SCYN 的源代码可以在 https://github.com/xikanfeng2/SCYN 上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/984c/8596905/2ab4d0180089/12864_2021_7941_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验