Synthetic Biology and Bioenergy, The J. Craig Venter Institutegrid.469946.0, Rockville, Maryland, USA.
Genomic Medicine, The J. Craig Venter Institutegrid.469946.0, Rockville, Maryland, USA.
Appl Environ Microbiol. 2022 Feb 8;88(3):e0148621. doi: 10.1128/AEM.01486-21. Epub 2021 Nov 24.
Staphylococcus aureus is an opportunistic pathogen that causes a wide range of infections and food poisoning in humans with antibiotic resistance, specifically to methicillin, compounding the problem. Bacteriophages (phages) provide an alternative treatment strategy, but these only infect a limited number of circulating strains and may quickly become ineffective due to bacterial resistance. To overcome these obstacles, engineered phages have been proposed, but new methods are needed for the efficient transformation of large DNA molecules into S. aureus to "boot-up" (i.e., rescue) infectious phages. We presented a new, efficient, and reproducible DNA transformation method, NEST (non-electroporation Staphylococcus transformation), for S. aureus to boot-up purified phage genomic DNA (at least 150 kb in length) and whole yeast-assembled synthetic phage genomes. This method was a powerful new tool for the transformation of DNA in S. aureus and will enable the rapid development of engineered therapeutic phages and phage cocktails against Gram-positive pathogens. The continued emergence of antibiotic-resistant bacterial pathogens has heightened the urgency for alternative antibacterial strategies. Phages provide an alternative treatment strategy but are difficult to optimize. Synthetic biology approaches have been successfully used to construct and rescue genomes of model phages but only in a limited number of highly transformable host species. In this study, we used a new, reproducible, and efficient transformation method to reconstitute a functional nonmodel Siphophage from a constructed synthetic genome. This method will facilitate the engineering of Staphylococcus and phages for therapeutic applications and the engineering of Staphylococcus strains by enabling transformation of higher molecular weight DNA to introduce more complex modifications.
金黄色葡萄球菌是一种机会性病原体,具有抗生素耐药性,特别是对甲氧西林的耐药性,可导致人类感染和食物中毒。噬菌体(phages)提供了一种替代治疗策略,但这些噬菌体只能感染有限数量的循环菌株,并且由于细菌耐药性的原因可能会迅速失效。为了克服这些障碍,已经提出了工程噬菌体,但需要新的方法将大的 DNA 分子高效转化为金黄色葡萄球菌,以“启动”(即拯救)感染性噬菌体。我们提出了一种新的、高效且可重复的 DNA 转化方法 NEST(非电穿孔金黄色葡萄球菌转化),用于启动纯化噬菌体基因组 DNA(至少 150kb 长)和整个酵母组装的合成噬菌体基因组。该方法是金黄色葡萄球菌中 DNA 转化的强大新工具,将能够快速开发针对革兰氏阳性病原体的工程治疗性噬菌体和噬菌体鸡尾酒。抗生素耐药性细菌病原体的持续出现加剧了对抗菌替代策略的迫切需求。噬菌体提供了一种替代治疗策略,但难以优化。合成生物学方法已成功用于构建和拯救模型噬菌体的基因组,但仅在少数高度可转化的宿主物种中。在这项研究中,我们使用了一种新的、可重复的、高效的转化方法,从构建的合成基因组中重新构建了功能性非模型 Siphophage。该方法将促进治疗应用中金黄色葡萄球菌和噬菌体的工程改造,以及通过引入更复杂的修饰来实现更高分子量 DNA 的转化,从而对金黄色葡萄球菌菌株进行工程改造。