Suppr超能文献

MemDis:预测跨膜蛋白中的无序区域。

MemDis: Predicting Disordered Regions in Transmembrane Proteins.

机构信息

Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary.

出版信息

Int J Mol Sci. 2021 Nov 12;22(22):12270. doi: 10.3390/ijms222212270.

Abstract

Transmembrane proteins (TMPs) play important roles in cells, ranging from transport processes and cell adhesion to communication. Many of these functions are mediated by intrinsically disordered regions (IDRs), flexible protein segments without a well-defined structure. Although a variety of prediction methods are available for predicting IDRs, their accuracy is very limited on TMPs due to their special physico-chemical properties. We prepared a dataset containing membrane proteins exclusively, using X-ray crystallography data. MemDis is a novel prediction method, utilizing convolutional neural network and long short-term memory networks for predicting disordered regions in TMPs. In addition to attributes commonly used in IDR predictors, we defined several TMP specific features to enhance the accuracy of our method further. MemDis achieved the highest prediction accuracy on TMP-specific dataset among other popular IDR prediction methods.

摘要

跨膜蛋白(TMPs)在细胞中发挥着重要作用,从运输过程和细胞黏附到通讯等。这些功能中的许多都是由内在无序区域(IDRs)介导的,即没有明确结构的灵活蛋白片段。尽管有多种预测 IDRs 的方法,但由于其特殊的物理化学性质,它们在 TMPs 上的准确性非常有限。我们使用 X 射线晶体学数据准备了一个仅包含膜蛋白的数据集。MemDis 是一种新的预测方法,利用卷积神经网络和长短时记忆网络来预测 TMP 中的无序区域。除了 IDR 预测器中常用的属性外,我们还定义了几个 TMP 特定的特征,以进一步提高方法的准确性。在其他流行的 IDR 预测方法中,MemDis 在 TMP 特异性数据集上实现了最高的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cd1/8623522/02e0df32ab14/ijms-22-12270-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验