Suppr超能文献

解读深度机器学习模型:肿瘤学家简易指南

Interpreting Deep Machine Learning Models: An Easy Guide for Oncologists.

作者信息

Amorim Jose P, Abreu Pedro H, Fernandez Alberto, Reyes Mauricio, Santos Joao, Abreu Miguel H

出版信息

IEEE Rev Biomed Eng. 2023;16:192-207. doi: 10.1109/RBME.2021.3131358. Epub 2023 Jan 5.

Abstract

Healthcare agents, in particular in the oncology field, are currently collecting vast amounts of diverse patient data. In this context, some decision-support systems, mostly based on deep learning techniques, have already been approved for clinical purposes. Despite all the efforts in introducing artificial intelligence methods in the workflow of clinicians, its lack of interpretability - understand how the methods make decisions - still inhibits their dissemination in clinical practice. The aim of this article is to present an easy guide for oncologists explaining how these methods make decisions and illustrating the strategies to explain them. Theoretical concepts were illustrated based on oncological examples and a literature review of research works was performed from PubMed between January 2014 to September 2020, using "deep learning techniques," "interpretability" and "oncology" as keywords. Overall, more than 60% are related to breast, skin or brain cancers and the majority focused on explaining the importance of tumor characteristics (e.g. dimension, shape) in the predictions. The most used computational methods are multilayer perceptrons and convolutional neural networks. Nevertheless, despite being successfully applied in different cancers scenarios, endowing deep learning techniques with interpretability, while maintaining their performance, continues to be one of the greatest challenges of artificial intelligence.

摘要

医疗保健机构,尤其是肿瘤学领域的机构,目前正在收集大量多样的患者数据。在这种背景下,一些主要基于深度学习技术的决策支持系统已经被批准用于临床目的。尽管在将人工智能方法引入临床医生的工作流程方面付出了诸多努力,但其缺乏可解释性——即理解这些方法如何做出决策——仍然阻碍了它们在临床实践中的推广。本文的目的是为肿瘤学家提供一份简易指南,解释这些方法如何做出决策,并阐述解释这些决策的策略。基于肿瘤学实例对理论概念进行了说明,并使用“深度学习技术”“可解释性”和“肿瘤学”作为关键词,对2014年1月至2020年9月期间来自PubMed的研究文献进行了综述。总体而言,超过60%的文献与乳腺癌、皮肤癌或脑癌相关,且大多数文献侧重于解释肿瘤特征(如尺寸、形状)在预测中的重要性。最常用的计算方法是多层感知器和卷积神经网络。然而,尽管深度学习技术已成功应用于不同的癌症场景,但在保持其性能的同时赋予其可解释性,仍然是人工智能面临的最大挑战之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验