Needham Elise J, Hingst Janne R, Parker Benjamin L, Morrison Kaitlin R, Yang Guang, Onslev Johan, Kristensen Jonas M, Højlund Kurt, Ling Naomi X Y, Oakhill Jonathan S, Richter Erik A, Kiens Bente, Petersen Janni, Pehmøller Christian, James David E, Wojtaszewski Jørgen F P, Humphrey Sean J
Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia.
Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
Nat Biotechnol. 2022 Apr;40(4):576-584. doi: 10.1038/s41587-021-01099-9. Epub 2021 Dec 2.
Protein phosphorylation dynamically integrates environmental and cellular information to control biological processes. Identifying functional phosphorylation amongst the thousands of phosphosites regulated by a perturbation at a global scale is a major challenge. Here we introduce 'personalized phosphoproteomics', a combination of experimental and computational analyses to link signaling with biological function by utilizing human phenotypic variance. We measure individual subject phosphoproteome responses to interventions with corresponding phenotypes measured in parallel. Applying this approach to investigate how exercise potentiates insulin signaling in human skeletal muscle, we identify both known and previously unidentified phosphosites on proteins involved in glucose metabolism. This includes a cooperative relationship between mTOR and AMPK whereby the former directly phosphorylates the latter on S377, for which we find a role in metabolic regulation. These results establish personalized phosphoproteomics as a general approach for investigating the signal transduction underlying complex biology.
蛋白质磷酸化动态整合环境和细胞信息以控制生物过程。在全球范围内由扰动调节的数千个磷酸化位点中识别功能性磷酸化是一项重大挑战。在此,我们引入“个性化磷酸化蛋白质组学”,这是一种实验和计算分析相结合的方法,通过利用人类表型差异将信号传导与生物学功能联系起来。我们测量个体受试者磷酸化蛋白质组对干预的反应,并同时测量相应的表型。应用这种方法来研究运动如何增强人类骨骼肌中的胰岛素信号传导,我们在参与葡萄糖代谢的蛋白质上鉴定出已知和先前未鉴定的磷酸化位点。这包括mTOR和AMPK之间的协同关系,即前者直接在S377位点磷酸化后者,我们发现这在代谢调节中发挥作用。这些结果将个性化磷酸化蛋白质组学确立为研究复杂生物学背后信号转导的通用方法。