Suppr超能文献

靶向细胞内蛋白-蛋白相互作用的大环肽。

Targeting intracellular protein-protein interactions with macrocyclic peptides.

机构信息

Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.

Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.

出版信息

Trends Pharmacol Sci. 2022 Mar;43(3):234-248. doi: 10.1016/j.tips.2021.11.008. Epub 2021 Dec 13.

Abstract

Intracellular protein-protein interactions (PPIs) are challenging targets for traditional drug modalities. Macrocyclic peptides (MPs) prove highly effective PPI inhibitors in vitro and can be rapidly discovered against PPI targets by rational design or screening combinatorial libraries but are generally impermeable to the cell membrane. Recent advances in MP science and technology are allowing for the development of 'drug-like' MPs that potently and specifically modulate intracellular PPI targets in cell culture and animal models. In this review, we highlight recent progress in generating cell-permeable MPs that enter the mammalian cell by passive diffusion, endocytosis followed by endosomal escape, or as-yet unknown mechanisms.

摘要

细胞内蛋白质-蛋白质相互作用 (PPIs) 是传统药物模式的挑战性靶点。大环肽 (MPs) 在体外被证明是高效的 PPI 抑制剂,可以通过合理设计或筛选组合文库快速发现针对 PPI 靶点,但通常不能穿透细胞膜。MP 科学和技术的最新进展使得能够开发“类药” MPs,这些 MPs 能够在细胞培养和动物模型中有效地特异性调节细胞内 PPI 靶点。在这篇综述中,我们强调了最近在通过被动扩散、内吞作用和核内体逃逸或未知机制进入哺乳动物细胞的细胞通透性 MPs 方面的进展。

相似文献

1
Targeting intracellular protein-protein interactions with macrocyclic peptides.
Trends Pharmacol Sci. 2022 Mar;43(3):234-248. doi: 10.1016/j.tips.2021.11.008. Epub 2021 Dec 13.
2
Understanding Cell Penetration of Cyclic Peptides.
Chem Rev. 2019 Sep 11;119(17):10241-10287. doi: 10.1021/acs.chemrev.9b00008. Epub 2019 May 14.
3
Designing Cell-Permeable Peptide Therapeutics That Enter the Cell by Endocytosis.
ACS Symp Ser Am Chem Soc. 2022;1417:179-197. doi: 10.1021/bk-2022-1417.ch007. Epub 2022 Aug 4.
4
Targeting intracellular protein-protein interactions with cell-permeable cyclic peptides.
Curr Opin Chem Biol. 2017 Jun;38:80-86. doi: 10.1016/j.cbpa.2017.03.011. Epub 2017 Apr 4.
5
Assessing the Cellular Uptake, Endosomal Escape, and Cytosolic Entry Efficiencies of Cyclic Peptides.
Methods Mol Biol. 2022;2371:301-316. doi: 10.1007/978-1-0716-1689-5_16.
6
Designing Cell-Permeable Macrocyclic Peptides.
Methods Mol Biol. 2019;2001:41-59. doi: 10.1007/978-1-4939-9504-2_3.
7
Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development.
Chemistry. 2021 Jan 21;27(5):1487-1513. doi: 10.1002/chem.201905385. Epub 2020 Nov 9.
8
Development of a Cell-Permeable Cyclic Peptidyl Inhibitor against the Keap1-Nrf2 Interaction.
J Org Chem. 2020 Feb 7;85(3):1416-1424. doi: 10.1021/acs.joc.9b02367. Epub 2019 Oct 28.
9
Cell-permeable cyclic peptides from synthetic libraries inspired by natural products.
J Am Chem Soc. 2015 Jan 21;137(2):715-21. doi: 10.1021/ja508766b. Epub 2015 Jan 8.
10
Targeting of extracellular protein-protein interactions with macrocyclic peptides.
Curr Opin Chem Biol. 2021 Jun;62:82-89. doi: 10.1016/j.cbpa.2021.02.013. Epub 2021 Mar 26.

引用本文的文献

1
Targeting G1-S-checkpoint-compromised cancers with cyclin A/B RxL inhibitors.
Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09433-w.
2
Anti-lymphoma peptide is inspired by mapping a sequence of four amino acids of KRAI motif as nuclear localization signal of Crlz-1.
Mol Ther Oncol. 2025 Feb 20;33(1):200953. doi: 10.1016/j.omton.2025.200953. eCollection 2025 Mar 20.
4
New insights into protein-protein interaction modulators in drug discovery and therapeutic advance.
Signal Transduct Target Ther. 2024 Dec 6;9(1):341. doi: 10.1038/s41392-024-02036-3.
5
Cyclic peptides targeting the SARS-CoV-2 programmed ribosomal frameshifting RNA from a multiplexed phage display library.
Chem Sci. 2024 Oct 17;15(46):19520-19533. doi: 10.1039/d4sc04026k. eCollection 2024 Nov 27.
6
Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets.
Chem Rev. 2024 Nov 13;124(21):12213-12241. doi: 10.1021/acs.chemrev.4c00422. Epub 2024 Oct 25.
7
MolBiC: the cell-based landscape illustrating molecular bioactivities.
Nucleic Acids Res. 2025 Jan 6;53(D1):D1683-D1691. doi: 10.1093/nar/gkae868.
8
Solid-Phase Synthesis of Diverse Macrocycles by Regiospecific 2-Pyridone Formation: Scope and Applications.
JACS Au. 2024 Aug 12;4(8):3018-3027. doi: 10.1021/jacsau.4c00352. eCollection 2024 Aug 26.
9
HELM-GPT: de novo macrocyclic peptide design using generative pre-trained transformer.
Bioinformatics. 2024 Jun 3;40(6). doi: 10.1093/bioinformatics/btae364.
10
Cytosolic Delivery of Bioactive Cyclic Peptide Cargo by Spontaneous Membrane Translocating Peptides.
ACS Omega. 2024 Feb 5;9(7):8179-8187. doi: 10.1021/acsomega.3c08701. eCollection 2024 Feb 20.

本文引用的文献

1
Discovery of a Bicyclic Peptidyl Pan-Ras Inhibitor.
J Med Chem. 2021 Sep 9;64(17):13038-13053. doi: 10.1021/acs.jmedchem.1c01130. Epub 2021 Aug 20.
2
Recent Progress and Clinical Development of Inhibitors that Block MDM4/p53 Protein-Protein Interactions.
J Med Chem. 2021 Aug 12;64(15):10621-10640. doi: 10.1021/acs.jmedchem.1c00940. Epub 2021 Jul 21.
3
Macrocyclic Peptides as a Novel Class of NNMT Inhibitors: A SAR Study Aimed at Inhibitory Activity in the Cell.
ACS Med Chem Lett. 2021 Jun 2;12(7):1093-1101. doi: 10.1021/acsmedchemlett.1c00134. eCollection 2021 Jul 8.
4
In vivo modulation of ubiquitin chains by N-methylated non-proteinogenic cyclic peptides.
RSC Chem Biol. 2021 Apr 1;2(2):513-522. doi: 10.1039/d0cb00179a. Epub 2020 Dec 16.
5
Directed evolution of cyclic peptides for inhibition of autophagy.
Chem Sci. 2021 Jan 13;12(10):3526-3543. doi: 10.1039/d0sc03603j.
6
An Integrated Molecular Grafting Approach for the Design of Keap1-Targeted Peptide Inhibitors.
ACS Chem Biol. 2021 Jul 16;16(7):1276-1287. doi: 10.1021/acschembio.1c00388. Epub 2021 Jun 21.
7
8
A Sos proteomimetic as a pan-Ras inhibitor.
Proc Natl Acad Sci U S A. 2021 May 4;118(18). doi: 10.1073/pnas.2101027118.
9
Absolute Quantification of Drug Vector Delivery to the Cytosol.
Angew Chem Int Ed Engl. 2021 Jun 25;60(27):14824-14830. doi: 10.1002/anie.202102332. Epub 2021 May 28.
10
Bicyclic β-Sheet Mimetics that Target the Transcriptional Coactivator β-Catenin and Inhibit Wnt Signaling.
Angew Chem Int Ed Engl. 2021 Jun 14;60(25):13937-13944. doi: 10.1002/anie.202102082. Epub 2021 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验