Suppr超能文献

治疗前奖励任务脑激活模式可预测个体抗抑郁反应:EMBARC随机临床试验的关键结果

Patterns of Pretreatment Reward Task Brain Activation Predict Individual Antidepressant Response: Key Results From the EMBARC Randomized Clinical Trial.

作者信息

Nguyen Kevin P, Chin Fatt Cherise, Treacher Alex, Mellema Cooper, Cooper Crystal, Jha Manish K, Kurian Benji, Fava Maurizio, McGrath Patrick J, Weissman Myrna, Phillips Mary L, Trivedi Madhukar H, Montillo Albert A

机构信息

Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas.

Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas.

出版信息

Biol Psychiatry. 2022 Mar 15;91(6):550-560. doi: 10.1016/j.biopsych.2021.09.011. Epub 2021 Sep 22.

Abstract

BACKGROUND

The lack of biomarkers to inform antidepressant selection is a key challenge in personalized depression treatment. This work identifies candidate biomarkers by building deep learning predictors of individual treatment outcomes using reward processing measures from functional magnetic resonance imaging, clinical assessments, and demographics.

METHODS

Participants in the EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study (n = 222) underwent reward processing task-based functional magnetic resonance imaging at baseline and were randomized to 8 weeks of sertraline (n = 106) or placebo (n = 116). Subsequently, sertraline nonresponders (n = 37) switched to 8 weeks of bupropion. The change in Hamilton Depression Rating Scale was measured after treatment. Reward processing, clinical measurements, and demographics were used to train treatment-specific deep learning models.

RESULTS

The predictive model for sertraline achieved R of 48% (95% CI, 33%-61%; p < 10) in predicting the change in Hamilton Depression Rating Scale and number-needed-to-treat (NNT) of 4.86 participants in predicting response. The placebo model achieved R of 28% (95% CI, 15%-42%; p < 10) and NNT of 2.95 in predicting response. The bupropion model achieved R of 34% (95% CI, 10%-59%, p < 10) and NNT of 1.68 in predicting response. Brain regions where reward processing activity was predictive included the prefrontal cortex and cerebellar crus 1 for sertraline and the cingulate cortex, caudate, orbitofrontal cortex, and crus 1 for bupropion.

CONCLUSIONS

These findings demonstrate the utility of reward processing measurements and deep learning to predict antidepressant outcomes and to form multimodal treatment biomarkers.

摘要

背景

缺乏用于指导抗抑郁药选择的生物标志物是个性化抑郁症治疗的一项关键挑战。这项研究通过利用功能磁共振成像的奖赏处理指标、临床评估和人口统计学数据构建个体治疗结果的深度学习预测模型,来识别候选生物标志物。

方法

参与EMBARC(临床护理中抗抑郁反应的调节因素和生物标志物确立)研究的222名参与者在基线时接受了基于奖赏处理任务的功能磁共振成像检查,并被随机分为接受8周舍曲林治疗组(n = 106)或安慰剂组(n = 116)。随后,舍曲林无反应者(n = 37)转而接受8周安非他酮治疗。治疗后测量汉密尔顿抑郁量表的变化。利用奖赏处理、临床测量和人口统计学数据来训练针对特定治疗的深度学习模型。

结果

舍曲林预测模型在预测汉密尔顿抑郁量表变化方面的R值为48%(95%CI,33%-61%;p<0.10),预测反应的需治疗人数(NNT)为4.86名参与者。安慰剂模型预测反应的R值为28%(95%CI,15%-42%;p<0.10),NNT为2.95。安非他酮模型预测反应的R值为34%(95%CI,10%-59%,p<0.10),NNT为1.68。奖赏处理活动具有预测性的脑区包括舍曲林对应的前额叶皮质和小脑脚1以及安非他酮对应的扣带回皮质、尾状核、眶额皮质和小脑脚1。

结论

这些发现证明了奖赏处理测量和深度学习在预测抗抑郁药疗效及形成多模式治疗生物标志物方面的效用。

相似文献

3
Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design.
J Psychiatr Res. 2016 Jul;78:11-23. doi: 10.1016/j.jpsychires.2016.03.001. Epub 2016 Mar 15.
4
Reward related ventral striatal activity and differential response to sertraline versus placebo in depressed individuals.
Mol Psychiatry. 2020 Jul;25(7):1526-1536. doi: 10.1038/s41380-019-0490-5. Epub 2019 Aug 28.
5
Effect of Intrinsic Patterns of Functional Brain Connectivity in Moderating Antidepressant Treatment Response in Major Depression.
Am J Psychiatry. 2020 Feb 1;177(2):143-154. doi: 10.1176/appi.ajp.2019.18070870. Epub 2019 Sep 20.
6
Dorsolateral Prefrontal Cortex and Subcallosal Cingulate Connectivity Show Preferential Antidepressant Response in Major Depressive Disorder.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2021 Jan;6(1):20-28. doi: 10.1016/j.bpsc.2020.06.019. Epub 2020 Jul 8.
8
Individualized fMRI connectivity defines signatures of antidepressant and placebo responses in major depression.
Mol Psychiatry. 2023 Jun;28(6):2490-2499. doi: 10.1038/s41380-023-01958-8. Epub 2023 Feb 2.

引用本文的文献

1
Predicting antidepressant response via local-global graph neural network and neuroimaging biomarkers.
NPJ Digit Med. 2025 Aug 12;8(1):515. doi: 10.1038/s41746-025-01912-8.
3
Antidepressant Treatment Response Prediction With Early Assessment of Functional Near-Infrared Spectroscopy and Micro-RNA.
IEEE J Transl Eng Health Med. 2024 Nov 26;13:9-22. doi: 10.1109/JTEHM.2024.3506556. eCollection 2025.
5
Personalized brain circuit scores identify clinically distinct biotypes in depression and anxiety.
Nat Med. 2024 Jul;30(7):2076-2087. doi: 10.1038/s41591-024-03057-9. Epub 2024 Jun 17.
6
Candidate biomarkers in psychiatric disorders: state of the field.
World Psychiatry. 2023 Jun;22(2):236-262. doi: 10.1002/wps.21078.
7
Drug Development for New Psychiatric Drug Therapies.
Adv Neurobiol. 2023;30:131-167. doi: 10.1007/978-3-031-21054-9_5.
8
New and emerging approaches to treat psychiatric disorders.
Nat Med. 2023 Feb;29(2):317-333. doi: 10.1038/s41591-022-02197-0. Epub 2023 Feb 16.

本文引用的文献

1
Text Data Augmentation for Deep Learning.
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
2
Anatomically-Informed Data Augmentation for Functional MRI with Applications to Deep Learning.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11313. doi: 10.1117/12.2548630. Epub 2020 Mar 10.
4
An electroencephalographic signature predicts antidepressant response in major depression.
Nat Biotechnol. 2020 Apr;38(4):439-447. doi: 10.1038/s41587-019-0397-3. Epub 2020 Feb 10.
5
Functional connectivity of the right inferior frontal gyrus and orbitofrontal cortex in depression.
Soc Cogn Affect Neurosci. 2020 Jan 30;15(1):75-86. doi: 10.1093/scan/nsaa014.
6
Predicting Response to the Antidepressant Bupropion using Pretreatment fMRI.
Predict Intell Med. 2019 Oct;11843:53-62. doi: 10.1007/978-3-030-32281-6_6. Epub 2019 Oct 10.
7
Machine learning algorithm validation with a limited sample size.
PLoS One. 2019 Nov 7;14(11):e0224365. doi: 10.1371/journal.pone.0224365. eCollection 2019.
8
Brain regulation of emotional conflict predicts antidepressant treatment response for depression.
Nat Hum Behav. 2019 Dec;3(12):1319-1331. doi: 10.1038/s41562-019-0732-1. Epub 2019 Sep 23.
9
Effect of Intrinsic Patterns of Functional Brain Connectivity in Moderating Antidepressant Treatment Response in Major Depression.
Am J Psychiatry. 2020 Feb 1;177(2):143-154. doi: 10.1176/appi.ajp.2019.18070870. Epub 2019 Sep 20.
10
Reward related ventral striatal activity and differential response to sertraline versus placebo in depressed individuals.
Mol Psychiatry. 2020 Jul;25(7):1526-1536. doi: 10.1038/s41380-019-0490-5. Epub 2019 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验