Nguyen Kevin P, Chin Fatt Cherise, Treacher Alex, Mellema Cooper, Cooper Crystal, Jha Manish K, Kurian Benji, Fava Maurizio, McGrath Patrick J, Weissman Myrna, Phillips Mary L, Trivedi Madhukar H, Montillo Albert A
Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas.
Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas.
Biol Psychiatry. 2022 Mar 15;91(6):550-560. doi: 10.1016/j.biopsych.2021.09.011. Epub 2021 Sep 22.
The lack of biomarkers to inform antidepressant selection is a key challenge in personalized depression treatment. This work identifies candidate biomarkers by building deep learning predictors of individual treatment outcomes using reward processing measures from functional magnetic resonance imaging, clinical assessments, and demographics.
Participants in the EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study (n = 222) underwent reward processing task-based functional magnetic resonance imaging at baseline and were randomized to 8 weeks of sertraline (n = 106) or placebo (n = 116). Subsequently, sertraline nonresponders (n = 37) switched to 8 weeks of bupropion. The change in Hamilton Depression Rating Scale was measured after treatment. Reward processing, clinical measurements, and demographics were used to train treatment-specific deep learning models.
The predictive model for sertraline achieved R of 48% (95% CI, 33%-61%; p < 10) in predicting the change in Hamilton Depression Rating Scale and number-needed-to-treat (NNT) of 4.86 participants in predicting response. The placebo model achieved R of 28% (95% CI, 15%-42%; p < 10) and NNT of 2.95 in predicting response. The bupropion model achieved R of 34% (95% CI, 10%-59%, p < 10) and NNT of 1.68 in predicting response. Brain regions where reward processing activity was predictive included the prefrontal cortex and cerebellar crus 1 for sertraline and the cingulate cortex, caudate, orbitofrontal cortex, and crus 1 for bupropion.
These findings demonstrate the utility of reward processing measurements and deep learning to predict antidepressant outcomes and to form multimodal treatment biomarkers.
缺乏用于指导抗抑郁药选择的生物标志物是个性化抑郁症治疗的一项关键挑战。这项研究通过利用功能磁共振成像的奖赏处理指标、临床评估和人口统计学数据构建个体治疗结果的深度学习预测模型,来识别候选生物标志物。
参与EMBARC(临床护理中抗抑郁反应的调节因素和生物标志物确立)研究的222名参与者在基线时接受了基于奖赏处理任务的功能磁共振成像检查,并被随机分为接受8周舍曲林治疗组(n = 106)或安慰剂组(n = 116)。随后,舍曲林无反应者(n = 37)转而接受8周安非他酮治疗。治疗后测量汉密尔顿抑郁量表的变化。利用奖赏处理、临床测量和人口统计学数据来训练针对特定治疗的深度学习模型。
舍曲林预测模型在预测汉密尔顿抑郁量表变化方面的R值为48%(95%CI,33%-61%;p<0.10),预测反应的需治疗人数(NNT)为4.86名参与者。安慰剂模型预测反应的R值为28%(95%CI,15%-42%;p<0.10),NNT为2.95。安非他酮模型预测反应的R值为34%(95%CI,10%-59%,p<0.10),NNT为1.68。奖赏处理活动具有预测性的脑区包括舍曲林对应的前额叶皮质和小脑脚1以及安非他酮对应的扣带回皮质、尾状核、眶额皮质和小脑脚1。
这些发现证明了奖赏处理测量和深度学习在预测抗抑郁药疗效及形成多模式治疗生物标志物方面的效用。