Suppr超能文献

肥胖与肾功能:两样本孟德尔随机化研究。

Obesity and Kidney Function: A Two-Sample Mendelian Randomization Study.

机构信息

Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.

Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.

出版信息

Clin Chem. 2022 Mar 4;68(3):461-472. doi: 10.1093/clinchem/hvab249.

Abstract

BACKGROUND

Obesity and type 2 diabetes (T2D) are correlated risk factors for chronic kidney disease (CKD).

METHODS

Using summary data from GIANT (Genetic Investigation of Anthropometric Traits), DIAGRAM (DIAbetes Genetics Replication And Meta-analysis), and CKDGen (CKD Genetics), we examined causality and directionality of the association between obesity and kidney function. Bidirectional 2-sample Mendelian randomization (MR) estimated the total causal effects of body mass index (BMI) and waist-to-hip ratio (WHR) on kidney function, and vice versa. Effects of adverse obesity and T2D were examined by stratifying BMI variants by their association with WHR and T2D. Multivariable MR estimated the direct causal effects of BMI and WHR on kidney function. The inverse variance weighted random-effects MR for Europeans was the main analysis, accompanied by several sensitivity MR analyses.

RESULTS

One standard deviation (SD ≈ 4.8 kg/m2) genetically higher BMI was associated with decreased estimated glomerular filtration rate (eGFR) [β=-0.032 (95% confidence intervals: -0.036, -0.027) log[eGFR], P = 1 × 10-43], increased blood urea nitrogen (BUN) [β = 0.010 (0.005, 0.015) log[BUN], P = 3 × 10-6], increased urinary albumin-to-creatinine ratio [β = 0.199 (0.067, 0.332) log[urinary albumin-to-creatinine ratio (UACR)], P = 0.003] in individuals with diabetes, and increased risk of microalbuminuria [odds ratios (OR) = 1.15 [1.04-1.28], P = 0.009] and CKD [1.13 (1.07-1.19), P = 3 × 10-6]. Corresponding estimates for WHR and for trans-ethnic populations were overall similar. The associations were driven by adverse obesity, and for microalbuminuria additionally by T2D. While genetically high BMI, unlike WHR, was directly associated with eGFR, BUN, and CKD, the pathway to albuminuria was likely through T2D. Genetically predicted kidney function was not associated with BMI or WHR.

CONCLUSIONS

Genetically high BMI is associated with impaired kidney function, driven by adverse obesity, and for albuminuria additionally by T2D.

摘要

背景

肥胖和 2 型糖尿病(T2D)是慢性肾脏病(CKD)的相关危险因素。

方法

利用 GIANT(人体测量特征的遗传研究)、DIAGRAM(糖尿病遗传复制和荟萃分析)和 CKDGen(CKD 遗传学)的汇总数据,我们研究了肥胖与肾功能之间关联的因果关系和方向性。双向 2 样本 Mendelian 随机化(MR)估计了体质指数(BMI)和腰臀比(WHR)对肾功能的总因果效应,反之亦然。通过按与 WHR 和 T2D 的关联对 BMI 变异体进行分层,研究了不良肥胖和 T2D 的影响。多变量 MR 估计了 BMI 和 WHR 对肾功能的直接因果影响。欧洲人的逆方差加权随机效应 MR 是主要分析,同时还进行了几项敏感性 MR 分析。

结果

一个标准差(SD≈4.8kg/m2)的遗传高 BMI 与估算肾小球滤过率(eGFR)降低相关[β=-0.032(95%置信区间:-0.036,-0.027)log[eGFR],P=1×10-43],血尿素氮(BUN)升高[β=0.010(0.005,0.015)log[BUN],P=3×10-6],糖尿病患者尿白蛋白/肌酐比值升高[β=0.199(0.067,0.332)log[尿白蛋白/肌酐比值(UACR)],P=0.003],并且微白蛋白尿风险增加[优势比(OR)=1.15(1.04-1.28),P=0.009]和 CKD[1.13(1.07-1.19),P=3×10-6]。WHR 和跨种族人群的相应估计值总体上相似。这些关联是由不良肥胖引起的,对于微白蛋白尿,还与 T2D 有关。虽然遗传高 BMI 与 eGFR、BUN 和 CKD 直接相关,但与白蛋白尿相关的途径可能是通过 T2D。遗传预测的肾功能与 BMI 或 WHR 无关。

结论

遗传高 BMI 与肾功能受损有关,其原因是不良肥胖,对于白蛋白尿,还与 T2D 有关。

相似文献

1
Obesity and Kidney Function: A Two-Sample Mendelian Randomization Study.
Clin Chem. 2022 Mar 4;68(3):461-472. doi: 10.1093/clinchem/hvab249.
2
Allometric body shape indices, type 2 diabetes and kidney function: A two-sample Mendelian randomization study.
Diabetes Obes Metab. 2023 Jul;25(7):1803-1812. doi: 10.1111/dom.15037. Epub 2023 Mar 15.
3
Causal Relationship Between Kidney Function and Cancer Risk: A Mendelian Randomization Study.
Am J Kidney Dis. 2024 Dec;84(6):686-695.e1. doi: 10.1053/j.ajkd.2024.05.016. Epub 2024 Jul 30.
4
Type 2 Diabetes, Diabetes Genetic Score and Risk of Decreased Renal Function and Albuminuria: A Mendelian Randomization Study.
EBioMedicine. 2016 Apr;6:162-170. doi: 10.1016/j.ebiom.2016.02.032. Epub 2016 Feb 20.
6
Causal relationship between basal metabolic rate and kidney function: a bidirectional two-sample mendelian randomization study.
Front Endocrinol (Lausanne). 2024 Apr 25;15:1319753. doi: 10.3389/fendo.2024.1319753. eCollection 2024.
7
Trans-ethnic Mendelian-randomization study reveals causal relationships between cardiometabolic factors and chronic kidney disease.
Int J Epidemiol. 2022 Jan 6;50(6):1995-2010. doi: 10.1093/ije/dyab203. Epub 2021 Oct 20.
9
Hypothyroidism and Kidney Function: A Mendelian Randomization Study.
Thyroid. 2020 Mar;30(3):365-379. doi: 10.1089/thy.2019.0167. Epub 2020 Feb 14.
10
Causal effects of plasma metabolites on chronic kidney diseases and renal function: a bidirectional Mendelian randomization study.
Front Endocrinol (Lausanne). 2024 Jul 26;15:1429159. doi: 10.3389/fendo.2024.1429159. eCollection 2024.

引用本文的文献

3
Reevaluating the standard: A bidirectional Mendelian randomization study of autoimmune thyroiditis and thyroid function.
Medicine (Baltimore). 2025 Aug 1;104(31):e43531. doi: 10.1097/MD.0000000000043531.
4
Metabolic health and cardiovascular disease across BMI categories: NHANES findings.
J Health Popul Nutr. 2025 Aug 1;44(1):273. doi: 10.1186/s41043-025-01003-0.
5
A comprehensive analysis of BMI prediction using machine learning and biochemical markers: Insights from NHANES data.
Medicine (Baltimore). 2025 Jul 11;104(28):e42781. doi: 10.1097/MD.0000000000042781.
7
Systematic analysis of gout burden among young adults in China from 1990 to 2021: findings from the global burden of disease study 2021.
Front Public Health. 2025 Jun 9;13:1613801. doi: 10.3389/fpubh.2025.1613801. eCollection 2025.

本文引用的文献

1
Trans-ethnic Mendelian-randomization study reveals causal relationships between cardiometabolic factors and chronic kidney disease.
Int J Epidemiol. 2022 Jan 6;50(6):1995-2010. doi: 10.1093/ije/dyab203. Epub 2021 Oct 20.
2
Discovery and prioritization of variants and genes for kidney function in >1.2 million individuals.
Nat Commun. 2021 Jul 16;12(1):4350. doi: 10.1038/s41467-021-24491-0.
3
The use of two-sample methods for Mendelian randomization analyses on single large datasets.
Int J Epidemiol. 2021 Nov 10;50(5):1651-1659. doi: 10.1093/ije/dyab084.
4
Conventional and Genetic Evidence on the Association between Adiposity and CKD.
J Am Soc Nephrol. 2021 Jan;32(1):127-137. doi: 10.1681/ASN.2020050679. Epub 2020 Oct 30.
5
Cross-sectional associations between central and general adiposity with albuminuria: observations from 400,000 people in UK Biobank.
Int J Obes (Lond). 2020 Nov;44(11):2256-2266. doi: 10.1038/s41366-020-0642-3. Epub 2020 Jul 16.
8
Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.
Nat Commun. 2019 Sep 11;10(1):4130. doi: 10.1038/s41467-019-11576-0.
9
A catalog of genetic loci associated with kidney function from analyses of a million individuals.
Nat Genet. 2019 Jun;51(6):957-972. doi: 10.1038/s41588-019-0407-x. Epub 2019 May 31.
10
Higher body mass index is associated with incident diabetes and chronic kidney disease independent of genetic confounding.
Kidney Int. 2019 May;95(5):1225-1233. doi: 10.1016/j.kint.2018.12.019. Epub 2019 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验