Suppr超能文献

克服靶向治疗剂量挑战的染色体外和染色体内 BRAF 扩增的可塑性。

Plasticity of Extrachromosomal and Intrachromosomal BRAF Amplifications in Overcoming Targeted Therapy Dosage Challenges.

机构信息

Department of Bioengineering, University of California, Los Angeles, California.

Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California.

出版信息

Cancer Discov. 2022 Apr 1;12(4):1046-1069. doi: 10.1158/2159-8290.CD-20-0936.

Abstract

UNLABELLED

Focal amplifications (FA) can mediate targeted therapy resistance in cancer. Understanding the structure and dynamics of FAs is critical for designing treatments that overcome plasticity-mediated resistance. We developed a melanoma model of dual MAPK inhibitor (MAPKi) resistance that bears BRAFV600 amplifications through either extrachromosomal DNA (ecDNA)/double minutes (DM) or intrachromosomal homogenously staining regions (HSR). Cells harboring BRAFV600E FAs displayed mode switching between DMs and HSRs, from both de novo genetic changes and selection of preexisting subpopulations. Plasticity is not exclusive to ecDNAs, as cells harboring HSRs exhibit drug addiction-driven structural loss of BRAF amplicons upon dose reduction. FA mechanisms can couple with kinase domain duplications and alternative splicing to enhance resistance. Drug-responsive amplicon plasticity is observed in the clinic and can involve other MAPK pathway genes, such as RAF1 and NRAS. BRAF FA-mediated dual MAPKi-resistant cells are more sensitive to proferroptotic drugs, extending the spectrum of ferroptosis sensitivity in MAPKi resistance beyond cases of dedifferentiation.

SIGNIFICANCE

Understanding the structure and dynamics of oncogene amplifications is critical for overcoming tumor relapse. BRAF amplifications are highly plastic under MAPKi dosage challenges in melanoma, through involvement of de novo genomic alterations, even in the HSR mode. Moreover, BRAF FA-driven, dual MAPKi-resistant cells extend the spectrum of resistance-linked ferroptosis sensitivity. This article is highlighted in the In This Issue feature, p. 873.

摘要

未加标注

焦点扩增(FA)可介导癌症的靶向治疗耐药。了解 FA 的结构和动态对于设计克服可塑性介导耐药性的治疗方法至关重要。我们开发了一种黑色素瘤模型,该模型对双 MAPK 抑制剂(MAPKi)具有耐药性,其通过染色体外 DNA(ecDNA)/双分钟(DM)或染色体内均匀染色区(HSR)携带 BRAFV600 扩增。携带 BRAFV600E FA 的细胞显示出 DM 和 HSR 之间的模式转换,这种转换源自新的遗传变化和对预先存在的亚群的选择。可塑性并非仅限于 ecDNAs,因为携带 HSR 的细胞在减少剂量时会表现出对药物成瘾驱动的 BRAF 扩增子结构丢失。FA 机制可以与激酶结构域重复和选择性剪接相结合,以增强耐药性。在临床上观察到了对药物反应性扩增子可塑性,并且它可能涉及其他 MAPK 通路基因,如 RAF1 和 NRAS。BRAF FA 介导的双 MAPKi 耐药细胞对促铁死亡药物更为敏感,将 MAPKi 耐药性中的铁死亡敏感性谱扩展到去分化病例之外。

意义

了解癌基因扩增的结构和动态对于克服肿瘤复发至关重要。在黑色素瘤中,即使在 HSR 模式下,MAPKi 剂量挑战下 BRAF 扩增也具有高度的可塑性,涉及新的基因组改变。此外,由 BRAF FA 驱动的双 MAPKi 耐药细胞扩展了与耐药相关的铁死亡敏感性谱。本文在本期特色文章中进行了重点介绍,第 873 页。

相似文献

2
Genomic deletions explain the generation of alternative BRAF isoforms conferring resistance to MAPK inhibitors in melanoma.
Cell Rep. 2024 Apr 23;43(4):114048. doi: 10.1016/j.celrep.2024.114048. Epub 2024 Apr 12.
3
Recurrent Tumor Cell-Intrinsic and -Extrinsic Alterations during MAPKi-Induced Melanoma Regression and Early Adaptation.
Cancer Discov. 2017 Nov;7(11):1248-1265. doi: 10.1158/2159-8290.CD-17-0401. Epub 2017 Sep 1.
4
A Fatty Acid Oxidation-dependent Metabolic Shift Regulates the Adaptation of -mutated Melanoma to MAPK Inhibitors.
Clin Cancer Res. 2019 Nov 15;25(22):6852-6867. doi: 10.1158/1078-0432.CCR-19-0253. Epub 2019 Aug 2.
5
Exploiting Drug Addiction Mechanisms to Select against MAPKi-Resistant Melanoma.
Cancer Discov. 2018 Jan;8(1):74-93. doi: 10.1158/2159-8290.CD-17-0682. Epub 2017 Sep 18.
7
DUSP4 protects BRAF- and NRAS-mutant melanoma from oncogene overdose through modulation of MITF.
Life Sci Alliance. 2022 May 17;5(9). doi: 10.26508/lsa.202101235. Print 2022 Sep.
8
Regulation of CEACAM1 Protein Expression by the Transcription Factor ETS-1 in BRAF-Mutant Human Metastatic Melanoma Cells.
Neoplasia. 2018 Apr;20(4):401-409. doi: 10.1016/j.neo.2018.01.012. Epub 2018 Mar 17.
9
A Novel Mitochondrial Inhibitor Blocks MAPK Pathway and Overcomes MAPK Inhibitor Resistance in Melanoma.
Clin Cancer Res. 2019 Nov 1;25(21):6429-6442. doi: 10.1158/1078-0432.CCR-19-0836. Epub 2019 Aug 22.
10
Plasma proteome alterations by MAPK inhibitors in BRAF-mutated metastatic cutaneous melanoma.
Neoplasia. 2021 Aug;23(8):783-791. doi: 10.1016/j.neo.2021.06.002. Epub 2021 Jul 8.

引用本文的文献

1
A Guide to Extrachromosomal DNA: Cancer's Dynamic Circular Genome.
Cancer Discov. 2025 Jun 3;15(6):1105-1114. doi: 10.1158/2159-8290.CD-25-0230.
2
NF-κB signaling directs a program of transient amplifications at innate immune response genes.
bioRxiv. 2025 Mar 13:2025.03.11.641929. doi: 10.1101/2025.03.11.641929.
3
Connecting the dots: Epigenetic regulation of extrachromosomal and inherited DNA amplifications.
J Biol Chem. 2025 Mar 26;301(6):108454. doi: 10.1016/j.jbc.2025.108454.
4
EGFR influences the resistance to targeted therapy in BRAF melanomas by regulating the ferroptosis process.
Arch Dermatol Res. 2025 Mar 1;317(1):514. doi: 10.1007/s00403-025-03895-8.
5
Modern biology of extrachromosomal DNA: A decade-long voyage of discovery.
Cell Res. 2025 Jan;35(1):11-22. doi: 10.1038/s41422-024-01054-8. Epub 2025 Jan 3.
7
Engineered extrachromosomal oncogene amplifications promote tumorigenesis.
Nature. 2025 Jan;637(8047):955-964. doi: 10.1038/s41586-024-08318-8. Epub 2024 Dec 18.
8
Enhancing transcription-replication conflict targets ecDNA-positive cancers.
Nature. 2024 Nov;635(8037):210-218. doi: 10.1038/s41586-024-07802-5. Epub 2024 Nov 6.

本文引用的文献

1
FaNDOM: Fast nested distance-based seeding of optical maps.
Patterns (N Y). 2021 May 3;2(5):100248. doi: 10.1016/j.patter.2021.100248. eCollection 2021 May 14.
2
Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription.
Cancer Cell. 2021 May 10;39(5):694-707.e7. doi: 10.1016/j.ccell.2021.03.006. Epub 2021 Apr 8.
3
Chromothripsis drives the evolution of gene amplification in cancer.
Nature. 2021 Mar;591(7848):137-141. doi: 10.1038/s41586-020-03064-z. Epub 2020 Dec 23.
4
Durable Suppression of Acquired MEK Inhibitor Resistance in Cancer by Sequestering MEK from ERK and Promoting Antitumor T-cell Immunity.
Cancer Discov. 2021 Mar;11(3):714-735. doi: 10.1158/2159-8290.CD-20-0873. Epub 2020 Dec 14.
5
Melanoma Persister Cells Are Tolerant to BRAF/MEK Inhibitors via ACOX1-Mediated Fatty Acid Oxidation.
Cell Rep. 2020 Nov 24;33(8):108421. doi: 10.1016/j.celrep.2020.108421.
6
Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma.
Nat Commun. 2020 Nov 16;11(1):5823. doi: 10.1038/s41467-020-19452-y.
7
Receptor-Driven ERK Pulses Reconfigure MAPK Signaling and Enable Persistence of Drug-Adapted BRAF-Mutant Melanoma Cells.
Cell Syst. 2020 Nov 18;11(5):478-494.e9. doi: 10.1016/j.cels.2020.10.002. Epub 2020 Oct 27.
9
Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers.
Nat Genet. 2020 Sep;52(9):891-897. doi: 10.1038/s41588-020-0678-2. Epub 2020 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验