Suppr超能文献

在泛癌普查中发现主要的肿瘤免疫表型。

Discovering dominant tumor immune archetypes in a pan-cancer census.

机构信息

Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA.

Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA.

出版信息

Cell. 2022 Jan 6;185(1):184-203.e19. doi: 10.1016/j.cell.2021.12.004. Epub 2021 Dec 27.

Abstract

Cancers display significant heterogeneity with respect to tissue of origin, driver mutations, and other features of the surrounding tissue. It is likely that individual tumors engage common patterns of the immune system-here "archetypes"-creating prototypical non-destructive tumor immune microenvironments (TMEs) and modulating tumor-targeting. To discover the dominant immune system archetypes, the University of California, San Francisco (UCSF) Immunoprofiler Initiative (IPI) processed 364 individual tumors across 12 cancer types using standardized protocols. Computational clustering of flow cytometry and transcriptomic data obtained from cell sub-compartments uncovered dominant patterns of immune composition across cancers. These archetypes were profound insofar as they also differentiated tumors based upon unique immune and tumor gene-expression patterns. They also partitioned well-established classifications of tumor biology. The IPI resource provides a template for understanding cancer immunity as a collection of dominant patterns of immune organization and provides a rational path forward to learn how to modulate these to improve therapy.

摘要

癌症在起源组织、驱动突变和周围组织的其他特征方面表现出显著的异质性。单个肿瘤可能采用常见的免疫系统模式——在这里称为“原型”——形成典型的非破坏性肿瘤免疫微环境(TME)并调节肿瘤靶向。为了发现主要的免疫系统原型,加州大学旧金山分校(UCSF)免疫分析计划(IPI)使用标准化方案对 12 种癌症类型中的 364 个肿瘤进行了处理。对从细胞亚区获得的流式细胞术和转录组数据进行的计算聚类揭示了癌症中免疫成分的主要模式。这些原型非常重要,因为它们还根据独特的免疫和肿瘤基因表达模式区分了肿瘤。它们也很好地划分了肿瘤生物学的既定分类。IPI 资源为理解癌症免疫作为主导免疫组织模式的集合提供了模板,并为学习如何调节这些模式以改善治疗提供了合理的途径。

相似文献

1
Discovering dominant tumor immune archetypes in a pan-cancer census.
Cell. 2022 Jan 6;185(1):184-203.e19. doi: 10.1016/j.cell.2021.12.004. Epub 2021 Dec 27.
4
Conservation of immune gene signatures in solid tumors and prognostic implications.
BMC Cancer. 2016 Nov 22;16(1):911. doi: 10.1186/s12885-016-2948-z.
6
Computational approaches for characterizing the tumor immune microenvironment.
Immunology. 2019 Oct;158(2):70-84. doi: 10.1111/imm.13101.
7
Comprehensive Transcriptomic Analysis Reveals the Role of the Immune Checkpoint HLA-G Molecule in Cancers.
Front Immunol. 2021 Jul 1;12:614773. doi: 10.3389/fimmu.2021.614773. eCollection 2021.
8
Unveiling major histocompatibility complex-mediated pan-cancer immune features by integrated single-cell and bulk RNA sequencing.
Cancer Lett. 2024 Aug 10;597:217062. doi: 10.1016/j.canlet.2024.217062. Epub 2024 Jun 13.
9
Measuring the composition of the tumor microenvironment with transcriptome analysis: past, present and future.
Future Oncol. 2024;20(17):1207-1220. doi: 10.2217/fon-2023-0658. Epub 2024 Feb 16.
10
The heterogeneity of NOTCH1 to tumor immune infiltration in pan-cancer.
Sci Rep. 2024 Nov 14;14(1):28071. doi: 10.1038/s41598-024-79883-1.

引用本文的文献

1
Large B cell lymphoma microenvironment archetype profiles.
Cancer Cell. 2025 Jul 14;43(7):1347-1364.e13. doi: 10.1016/j.ccell.2025.06.002. Epub 2025 Jun 18.
3
Multimodal delineation of a layer of effector function among exhausted CD8 T cells in tumors.
Sci Immunol. 2025 Jul 11;10(109):eadt3537. doi: 10.1126/sciimmunol.adt3537.
4
EMitool: Explainable Multi-Omics Integration for Disease Subtyping.
Int J Mol Sci. 2025 Apr 30;26(9):4268. doi: 10.3390/ijms26094268.
5
Mapping the genetic landscape establishing a tumor immune microenvironment favorable for anti-PD-1 response.
Cell Rep. 2025 May 27;44(5):115698. doi: 10.1016/j.celrep.2025.115698. Epub 2025 May 8.
6
Lymphatic chain gradients regulate the magnitude and heterogeneity of T cell responses to vaccination.
J Exp Med. 2025 Aug 4;222(8). doi: 10.1084/jem.20241311. Epub 2025 Apr 30.
7
A Single-Cell Atlas of RNA Alternative Splicing in the Glioma-Immune Ecosystem.
bioRxiv. 2025 Mar 30:2025.03.26.645511. doi: 10.1101/2025.03.26.645511.
8
Systemic inflammation in response to radiation drives the genesis of an immunosuppressed tumor microenvironment.
Neoplasia. 2025 Jun;64:101164. doi: 10.1016/j.neo.2025.101164. Epub 2025 Apr 3.
9
Tumor cell heterogeneity drives spatial organization of the intratumoral immune response.
J Exp Med. 2025 Jun 2;222(6). doi: 10.1084/jem.20242282. Epub 2025 Apr 1.
10
Macrophage-derived Fgl2 dampens antitumor immunity through regulation of FcγRIIB+CD8+ T cells in melanoma.
JCI Insight. 2025 Mar 24;10(6):e182563. doi: 10.1172/jci.insight.182563.

本文引用的文献

1
Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease.
Immunity. 2021 Aug 10;54(8):1883-1900.e5. doi: 10.1016/j.immuni.2021.07.007. Epub 2021 Jul 30.
2
Phenotype, specificity and avidity of antitumour CD8 T cells in melanoma.
Nature. 2021 Aug;596(7870):119-125. doi: 10.1038/s41586-021-03704-y. Epub 2021 Jul 21.
3
Conserved pan-cancer microenvironment subtypes predict response to immunotherapy.
Cancer Cell. 2021 Jun 14;39(6):845-865.e7. doi: 10.1016/j.ccell.2021.04.014. Epub 2021 May 20.
4
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma.
Cancer Cell. 2021 May 10;39(5):649-661.e5. doi: 10.1016/j.ccell.2021.02.015. Epub 2021 Mar 11.
5
Mutant p53 suppresses innate immune signaling to promote tumorigenesis.
Cancer Cell. 2021 Apr 12;39(4):494-508.e5. doi: 10.1016/j.ccell.2021.01.003. Epub 2021 Feb 4.
6
A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells.
Cell. 2021 Feb 4;184(3):792-809.e23. doi: 10.1016/j.cell.2021.01.010.
8
Global absence and targeting of protective immune states in severe COVID-19.
Nature. 2021 Mar;591(7848):124-130. doi: 10.1038/s41586-021-03234-7. Epub 2021 Jan 25.
9
Developmental cell programs are co-opted in inflammatory skin disease.
Science. 2021 Jan 22;371(6527). doi: 10.1126/science.aba6500.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验