Suppr超能文献

介孔硅纳米限域下吡喹酮药物共晶的形成:固体形态对溶出增强的影响。

Nanoconfinement of a Pharmaceutical Cocrystal with Praziquantel in Mesoporous Silica: The Influence of the Solid Form on Dissolution Enhancement.

机构信息

Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México.

Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México.

出版信息

Mol Pharm. 2022 Feb 7;19(2):414-431. doi: 10.1021/acs.molpharmaceut.1c00606. Epub 2021 Dec 30.

Abstract

Nanoconfinement is a recent strategy to enhance solubility and dissolution of active pharmaceutical ingredients (APIs) with poor biopharmaceutical properties. In this work, we combine the advantage of cocrystals of racemic praziquantel (PZQ) containing a water-soluble coformer (i.e., increased solubility and supersaturation) and its confinement in a mesoporous silica material (i.e., increased dissolution rate). Among various potential cocrystalline phases of PZQ with dicarboxylic acid coformers, the cocrystal with glutaric acid (PZQ-GLU) was selected and successfully loaded by the melting method into nanopores of SBA-15 (experimental pore size of 5.6 nm) as suggested by physical and spectroscopic characterization using various complementary techniques like N adsorption, powder X-ray diffraction (PXRD), infrared spectroscopy (IR), solid-state NMR (ss-NMR), differential scanning calorimetry (DSC), and field emission-scanning electron microscopy (FE-SEM) analysis. The PZQ-GLU phase confined in SBA-15 presents more mobility according to ss-NMR studies but still retains its cocrystal-like features in the IR spectra, and it also shows depression of the melting transition temperature in DSC. On the contrary, pristine PZQ loaded into SBA-15 was found only in the amorphous state, according to the aforementioned studies. This dissimilar behavior of the composites was attributed to the larger crystal lattice of PZQ over the PZQ-GLU cocrystal (3320.1 vs 1167.9 Å) and to stronger intermolecular interactions between PZQ and GLU, facilitating the confinement of a more mobile solid-like phase in the constrained channels. Powder dissolution studies under extremely nonsink conditions (SI = 0.014) of the confined PZQ-GLU and amorphous PZQ phases embedded in mesoporous silica showed transient supersaturation behavior when dissolving in simulated gastric fluid (HCl pH 1.2 at 37 ± 0.5 °C) in a similar fashion to the bare cocrystal PZQ-GLU. A comparison of the area under the curve (AUC) of the dissolution profiles afforded a dissolution advantage of 2-fold ( < 0.05) of the new solid phases over pristine racemic PZQ after 90 min; under these conditions, the solubilized API reprecipitated as the recently discovered PZQ hemihydrate (PZQ-HH). In the presence of a cellulosic polymer, sustained solubilization of PZQ from composites SBA-15/PZQ or SBA-15/PZQ-GLU was observed, increasing AUC up to 5.1-fold in comparison to pristine PZQ. The combination of a confined solid phase in mesoporous silica and a methylcellulose polymer in the dissolution medium effectively maintained the drug solubilized during times significant to promote absorption. Finally, powder dissolution studies under intermediate nonsink conditions (SI = 1.99) showed a fast release profile from the nanoconfined PZQ-GLU phase in SBA-15, which reached rapid saturation (95% drug dissolved at 30 min); the amorphous PZQ composite and bare PZQ-GLU also displayed an immediate release of the API but at a lower rate (69% drug dissolved at 30 min). In all of these cases, a large dissolution advantage was observed from any of the novel solid phases over PZQ.

摘要

纳米限域是一种提高生物药剂学性质差的活性药物成分(APIs)溶解度和溶解度的新策略。在这项工作中,我们结合了包含水溶性共晶形成剂的外消旋吡喹酮(PZQ)共晶(即增加溶解度和过饱和度)的优势及其在介孔硅材料中的限域(即增加溶解速率)。在外消旋 PZQ 与二羧酸共晶形成剂的各种潜在共晶相中,选择了与戊二酸(PZQ-GLU)的共晶,并通过熔融法成功负载到 SBA-15 的纳米孔中(实验孔径为 5.6nm),这是通过各种互补技术如 N 吸附、粉末 X 射线衍射(PXRD)、红外光谱(IR)、固态 NMR(ss-NMR)、差示扫描量热法(DSC)和场发射扫描电子显微镜(FE-SEM)分析得出的。根据 ss-NMR 研究,SBA-15 中限域的 PZQ-GLU 相表现出更高的流动性,但在 IR 光谱中仍保留其共晶特征,并且在 DSC 中也显示出熔融转变温度的降低。相反,根据上述研究,负载到 SBA-15 中的原始 PZQ 仅以无定形态存在。这种复合材料的不同行为归因于 PZQ 的晶格大于 PZQ-GLU 共晶(3320.1 对 1167.9 Å),以及 PZQ 和 GLU 之间更强的分子间相互作用,有利于在受限通道中限域更具流动性的固态相。在极端非均相条件(SI = 0.014)下,将限域的 PZQ-GLU 和嵌入介孔硅中的无定形 PZQ 相的粉末溶解研究表明,当在模拟胃液(HCl pH 1.2,37 ± 0.5°C)中溶解时,会出现瞬态过饱和度行为,与裸露的共晶 PZQ-GLU 相似。比较溶解曲线下面积(AUC)的溶解曲线,新的固态相与原始外消旋 PZQ 相比,在 90 分钟后具有 2 倍的溶解优势(<0.05);在这些条件下,溶解的 API 作为最近发现的吡喹酮半水合物(PZQ-HH)重新沉淀。在纤维素聚合物存在的情况下,观察到从 SBA-15/PZQ 或 SBA-15/PZQ-GLU 复合材料中持续溶解 PZQ,与原始 PZQ 相比,AUC 增加了 5.1 倍。介孔硅中受限的固态相与溶解介质中的甲基纤维素聚合物的结合,有效地保持了药物在促进吸收的时间内的溶解。最后,在中间非均相条件(SI = 1.99)下的粉末溶解研究表明,SBA-15 中的纳米限域 PZQ-GLU 相具有快速释放特性,在 30 分钟内达到快速饱和(95%药物溶解);无定形 PZQ 复合材料和裸露的 PZQ-GLU 也表现出 API 的即刻释放,但释放速度较低(30 分钟内溶解 69%的药物)。在所有这些情况下,与 PZQ 相比,任何新的固态相都具有很大的溶解优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验