Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México.
Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México.
Mol Pharm. 2022 Feb 7;19(2):414-431. doi: 10.1021/acs.molpharmaceut.1c00606. Epub 2021 Dec 30.
Nanoconfinement is a recent strategy to enhance solubility and dissolution of active pharmaceutical ingredients (APIs) with poor biopharmaceutical properties. In this work, we combine the advantage of cocrystals of racemic praziquantel (PZQ) containing a water-soluble coformer (i.e., increased solubility and supersaturation) and its confinement in a mesoporous silica material (i.e., increased dissolution rate). Among various potential cocrystalline phases of PZQ with dicarboxylic acid coformers, the cocrystal with glutaric acid (PZQ-GLU) was selected and successfully loaded by the melting method into nanopores of SBA-15 (experimental pore size of 5.6 nm) as suggested by physical and spectroscopic characterization using various complementary techniques like N adsorption, powder X-ray diffraction (PXRD), infrared spectroscopy (IR), solid-state NMR (ss-NMR), differential scanning calorimetry (DSC), and field emission-scanning electron microscopy (FE-SEM) analysis. The PZQ-GLU phase confined in SBA-15 presents more mobility according to ss-NMR studies but still retains its cocrystal-like features in the IR spectra, and it also shows depression of the melting transition temperature in DSC. On the contrary, pristine PZQ loaded into SBA-15 was found only in the amorphous state, according to the aforementioned studies. This dissimilar behavior of the composites was attributed to the larger crystal lattice of PZQ over the PZQ-GLU cocrystal (3320.1 vs 1167.9 Å) and to stronger intermolecular interactions between PZQ and GLU, facilitating the confinement of a more mobile solid-like phase in the constrained channels. Powder dissolution studies under extremely nonsink conditions (SI = 0.014) of the confined PZQ-GLU and amorphous PZQ phases embedded in mesoporous silica showed transient supersaturation behavior when dissolving in simulated gastric fluid (HCl pH 1.2 at 37 ± 0.5 °C) in a similar fashion to the bare cocrystal PZQ-GLU. A comparison of the area under the curve (AUC) of the dissolution profiles afforded a dissolution advantage of 2-fold ( < 0.05) of the new solid phases over pristine racemic PZQ after 90 min; under these conditions, the solubilized API reprecipitated as the recently discovered PZQ hemihydrate (PZQ-HH). In the presence of a cellulosic polymer, sustained solubilization of PZQ from composites SBA-15/PZQ or SBA-15/PZQ-GLU was observed, increasing AUC up to 5.1-fold in comparison to pristine PZQ. The combination of a confined solid phase in mesoporous silica and a methylcellulose polymer in the dissolution medium effectively maintained the drug solubilized during times significant to promote absorption. Finally, powder dissolution studies under intermediate nonsink conditions (SI = 1.99) showed a fast release profile from the nanoconfined PZQ-GLU phase in SBA-15, which reached rapid saturation (95% drug dissolved at 30 min); the amorphous PZQ composite and bare PZQ-GLU also displayed an immediate release of the API but at a lower rate (69% drug dissolved at 30 min). In all of these cases, a large dissolution advantage was observed from any of the novel solid phases over PZQ.
纳米限域是一种提高生物药剂学性质差的活性药物成分(APIs)溶解度和溶解度的新策略。在这项工作中,我们结合了包含水溶性共晶形成剂的外消旋吡喹酮(PZQ)共晶(即增加溶解度和过饱和度)的优势及其在介孔硅材料中的限域(即增加溶解速率)。在外消旋 PZQ 与二羧酸共晶形成剂的各种潜在共晶相中,选择了与戊二酸(PZQ-GLU)的共晶,并通过熔融法成功负载到 SBA-15 的纳米孔中(实验孔径为 5.6nm),这是通过各种互补技术如 N 吸附、粉末 X 射线衍射(PXRD)、红外光谱(IR)、固态 NMR(ss-NMR)、差示扫描量热法(DSC)和场发射扫描电子显微镜(FE-SEM)分析得出的。根据 ss-NMR 研究,SBA-15 中限域的 PZQ-GLU 相表现出更高的流动性,但在 IR 光谱中仍保留其共晶特征,并且在 DSC 中也显示出熔融转变温度的降低。相反,根据上述研究,负载到 SBA-15 中的原始 PZQ 仅以无定形态存在。这种复合材料的不同行为归因于 PZQ 的晶格大于 PZQ-GLU 共晶(3320.1 对 1167.9 Å),以及 PZQ 和 GLU 之间更强的分子间相互作用,有利于在受限通道中限域更具流动性的固态相。在极端非均相条件(SI = 0.014)下,将限域的 PZQ-GLU 和嵌入介孔硅中的无定形 PZQ 相的粉末溶解研究表明,当在模拟胃液(HCl pH 1.2,37 ± 0.5°C)中溶解时,会出现瞬态过饱和度行为,与裸露的共晶 PZQ-GLU 相似。比较溶解曲线下面积(AUC)的溶解曲线,新的固态相与原始外消旋 PZQ 相比,在 90 分钟后具有 2 倍的溶解优势(<0.05);在这些条件下,溶解的 API 作为最近发现的吡喹酮半水合物(PZQ-HH)重新沉淀。在纤维素聚合物存在的情况下,观察到从 SBA-15/PZQ 或 SBA-15/PZQ-GLU 复合材料中持续溶解 PZQ,与原始 PZQ 相比,AUC 增加了 5.1 倍。介孔硅中受限的固态相与溶解介质中的甲基纤维素聚合物的结合,有效地保持了药物在促进吸收的时间内的溶解。最后,在中间非均相条件(SI = 1.99)下的粉末溶解研究表明,SBA-15 中的纳米限域 PZQ-GLU 相具有快速释放特性,在 30 分钟内达到快速饱和(95%药物溶解);无定形 PZQ 复合材料和裸露的 PZQ-GLU 也表现出 API 的即刻释放,但释放速度较低(30 分钟内溶解 69%的药物)。在所有这些情况下,与 PZQ 相比,任何新的固态相都具有很大的溶解优势。