Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA.
Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
J Cereb Blood Flow Metab. 2022 Jun;42(6):911-934. doi: 10.1177/0271678X221076570. Epub 2022 Jan 26.
While functional MRI (fMRI) localizes brain activation and deactivation, functional MRS (fMRS) provides insights into the underlying metabolic conditions. There is much interest in measuring task-induced and resting levels of metabolites implicated in neuroenergetics (e.g., lactate, glucose, or β-hydroxybutyrate (BHB)) and neurotransmission (e.g., γ-aminobutyric acid (GABA) or pooled glutamate and glutamine (Glx)). Ultra-high magnetic field (e.g., 7T) has boosted the fMRS quantification precision, reliability, and stability of spectroscopic observations using short echo-time (TE) H-MRS techniques. While short TE H-MRS lacks sensitivity and specificity for fMRS at lower magnetic fields (e.g., 3T or 4T), most of these metabolites can also be detected by J-difference editing (JDE) H-MRS with longer TE to filter overlapping resonances. The H-MRS studies show that JDE can detect GABA, Glx, lactate, and BHB at 3T, 4T and 7T. Most recently, it has also been demonstrated that JDE H-MRS is capable of reliable detection of metabolic changes in different brain areas at various magnetic fields. Combining fMRS measurements with fMRI is important for understanding normal brain function, but also clinically relevant for mechanisms and/or biomarkers of neurological and neuropsychiatric disorders. We provide an up-to-date overview of fMRS research in the last three decades, both in terms of applications and technological advances. Overall the emerging fMRS techniques can be expected to contribute substantially to our understanding of metabolism for brain function and dysfunction.
虽然功能磁共振成像 (fMRI) 可以定位大脑的激活和失活区域,但功能磁共振波谱 (fMRS) 可以深入了解潜在的代谢情况。人们对测量神经能量代谢物(例如乳酸盐、葡萄糖或β-羟基丁酸 (BHB))和神经递质(例如γ-氨基丁酸 (GABA) 或谷氨酸和谷氨酰胺总和 (Glx))的任务诱导和静息水平非常感兴趣。超高磁场(例如 7T)提高了使用短回波时间 (TE) H-MRS 技术的 fMRS 定量精度、可靠性和光谱观察稳定性。虽然短 TE H-MRS 在较低磁场(例如 3T 或 4T)下对 fMRS 的灵敏度和特异性较低,但这些代谢物中的大多数也可以通过更长 TE 的 J 差编辑 (JDE) H-MRS 检测到,以过滤重叠的共振。H-MRS 研究表明,JDE 可在 3T、4T 和 7T 检测 GABA、Glx、乳酸盐和 BHB。最近,还证明 JDE H-MRS 能够可靠地检测不同磁场下不同脑区的代谢变化。将 fMRS 测量与 fMRI 相结合对于了解正常大脑功能非常重要,但对于神经和神经精神疾病的机制和/或生物标志物也具有临床意义。我们提供了过去三十年来 fMRS 研究的最新概述,包括应用和技术进展。总的来说,新兴的 fMRS 技术有望为我们对大脑功能和功能障碍的代谢理解做出重大贡献。