Suppr超能文献

具有可调热点的磁响应表面增强拉曼散射平台用于超灵敏病毒核酸检测。

Magnetic-Responsive Surface-Enhanced Raman Scattering Platform with Tunable Hot Spot for Ultrasensitive Virus Nucleic Acid Detection.

机构信息

Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.

Department of Bioengineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Jan 26;14(3):4714-4724. doi: 10.1021/acsami.1c21173. Epub 2022 Jan 12.

Abstract

Surface-enhanced Raman scattering (SERS)-based biosensors are promising tools for virus nucleic acid detection. However, it remains challenging for SERS-based biosensors using a sandwiching strategy to detect long-chain nucleic acids such as nucleocapsid (N) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because the extension of the coupling distance (CD) between the two tethered metallic nanostructures weakens electric field and SERS signals. Herein, we report a magnetic-responsive substrate consisting of heteoronanostructures that controls the CD for ultrasensitive and highly selective detection of the N gene of SARS-CoV-2. Significantly, our findings show that this platform reversibly shortens the CD and enhances SERS signals with a 10-fold increase in the detection limit from 1 fM to 100 aM, compared to those without magnetic modulation. The optical simulation that emulates the CD shortening process confirms the CD-dependent electric field strength and further supports the experimental results. Our study provides new insights into designing a stimuli-responsive SERS-based platform with tunable hot spots for long-chain nucleic acid detection.

摘要

基于表面增强拉曼散射(SERS)的生物传感器是用于病毒核酸检测的有前途的工具。然而,使用三明治策略的基于 SERS 的生物传感器仍然难以检测长链核酸,例如严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)的核衣壳(N)基因,因为两个连接的金属纳米结构之间的耦合距离(CD)的延长会削弱电场和 SERS 信号。在此,我们报告了一种由 heteronanostructures 组成的磁性响应基质,该基质可控制 CD,从而实现对 SARS-CoV-2 的 N 基因进行超灵敏和高选择性的检测。重要的是,我们的研究结果表明,与没有磁调制的情况相比,该平台可通过将 CD 缩短 10 倍,将检测限从 1 fM 提高到 100 aM,从而可逆转地缩短 CD 并增强 SERS 信号。模拟 CD 缩短过程的光学模拟证实了 CD 依赖性电场强度,并进一步支持了实验结果。我们的研究为设计具有可调热点的用于长链核酸检测的响应性 SERS 平台提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验