Ritchie Jordon B, Frey Lewis J, Lamy Jean-Baptiste, Bellcross Cecelia, Morrison Heath, Schiffman Joshua D, Welch Brandon M
Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States.
Health Equity and Rural Outreach Innovation Center, Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, United States.
JMIR Cancer. 2022 Jan 31;8(1):e29289. doi: 10.2196/29289.
Identifying patients at risk of hereditary cancer based on their family health history is a highly nuanced task. Frequently, patients at risk are not referred for genetic counseling as providers lack the time and training to collect and assess their family health history. Consequently, patients at risk do not receive genetic counseling and testing that they need to determine the preventive steps they should take to mitigate their risk.
This study aims to automate clinical practice guideline recommendations for hereditary cancer risk based on patient family health history.
We combined chatbots, web application programming interfaces, clinical practice guidelines, and ontologies into a web service-oriented system that can automate family health history collection and assessment. We used Owlready2 and Protégé to develop a lightweight, patient-centric clinical practice guideline domain ontology using hereditary cancer criteria from the American College of Medical Genetics and Genomics and the National Cancer Comprehensive Network.
The domain ontology has 758 classes, 20 object properties, 23 datatype properties, and 42 individuals and encompasses 44 cancers, 144 genes, and 113 clinical practice guideline criteria. So far, it has been used to assess >5000 family health history cases. We created 192 test cases to ensure concordance with clinical practice guidelines. The average test case completes in 4.5 (SD 1.9) seconds, the longest in 19.6 seconds, and the shortest in 2.9 seconds.
Web service-enabled, chatbot-oriented family health history collection and ontology-driven clinical practice guideline criteria risk assessment is a simple and effective method for automating hereditary cancer risk screening.
基于患者家族健康史识别遗传性癌症风险患者是一项非常细致入微的任务。通常,有风险的患者未被转介接受遗传咨询,因为医疗服务提供者缺乏收集和评估其家族健康史的时间和培训。因此,有风险的患者无法获得他们所需的遗传咨询和检测,以确定应采取哪些预防措施来降低风险。
本研究旨在基于患者家族健康史,实现遗传性癌症风险临床实践指南建议的自动化。
我们将聊天机器人、网络应用程序编程接口、临床实践指南和本体整合到一个面向网络服务的系统中,该系统可以自动收集和评估家族健康史。我们使用Owlready2和Protégé,根据美国医学遗传学与基因组学学会和美国国立综合癌症网络的遗传性癌症标准,开发了一个轻量级、以患者为中心的临床实践指南领域本体。
该领域本体有758个类、20个对象属性、23个数据类型属性和42个个体,涵盖44种癌症、144个基因和113条临床实践指南标准。到目前为止,它已被用于评估5000多个家族健康史病例。我们创建了192个测试用例,以确保与临床实践指南一致。平均测试用例在4.5(标准差1.9)秒内完成,最长19.6秒,最短2.9秒。
启用网络服务、面向聊天机器人的家族健康史收集和本体驱动的临床实践指南标准风险评估是一种简单有效的遗传性癌症风险筛查自动化方法。