TRON Translational Oncology, Mainz, Germany.
Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
Nat Rev Drug Discov. 2022 Apr;21(4):261-282. doi: 10.1038/s41573-021-00387-y. Epub 2022 Feb 1.
Somatic mutations in cancer cells can generate tumour-specific neoepitopes, which are recognized by autologous T cells in the host. As neoepitopes are not subject to central immune tolerance and are not expressed in healthy tissues, they are attractive targets for therapeutic cancer vaccines. Because the vast majority of cancer mutations are unique to the individual patient, harnessing the full potential of this rich source of targets requires individualized treatment approaches. Many computational algorithms and machine-learning tools have been developed to identify mutations in sequence data, to prioritize those that are more likely to be recognized by T cells and to design tailored vaccines for every patient. In this Review, we fill the gaps between the understanding of basic mechanisms of T cell recognition of neoantigens and the computational approaches for discovery of somatic mutations and neoantigen prediction for cancer immunotherapy. We present a new classification of neoantigens, distinguishing between guarding, restrained and ignored neoantigens, based on how they confer proficient antitumour immunity in a given clinical context. Such context-based differentiation will contribute to a framework that connects neoantigen biology to the clinical setting and medical peculiarities of cancer, and will enable future neoantigen-based therapies to provide greater clinical benefit.
癌细胞中的体细胞突变可以产生肿瘤特异性新抗原,这些新抗原被宿主中的自体 T 细胞识别。由于新抗原不受中枢免疫耐受的影响,并且不在健康组织中表达,因此它们是治疗性癌症疫苗的有吸引力的靶标。由于绝大多数癌症突变是个体患者所特有的,因此需要个体化的治疗方法来充分利用这一丰富的靶标来源。已经开发了许多计算算法和机器学习工具来识别序列数据中的突变,优先考虑那些更有可能被 T 细胞识别的突变,并为每个患者设计定制的疫苗。在这篇综述中,我们填补了 T 细胞识别新抗原的基本机制与发现体细胞突变和预测癌症免疫治疗中新抗原的计算方法之间的空白。我们提出了一种新的新抗原分类,根据它们在特定临床环境中赋予有效抗肿瘤免疫的方式,将其区分守卫、限制和忽略的新抗原。这种基于上下文的区分将有助于将新抗原生物学与临床环境和癌症的医学特殊性联系起来,并使未来基于新抗原的治疗方法提供更大的临床获益。