Suppr超能文献

真菌微生物组驱动胰腺癌中的 IL-33 分泌和 2 型免疫。

Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer.

机构信息

Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA.

Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.

出版信息

Cancer Cell. 2022 Feb 14;40(2):153-167.e11. doi: 10.1016/j.ccell.2022.01.003. Epub 2022 Feb 3.

Abstract

T2 cells and innate lymphoid cells 2 (ILC2) can stimulate tumor growth by secreting pro-tumorigenic cytokines such as interleukin-4 (IL-4), IL-5, and IL-13. However, the mechanisms by which type 2 immune cells traffic to the tumor microenvironment are unknown. Here, we show that oncogenic Kras increases IL-33 expression in pancreatic ductal adenocarcinoma (PDAC) cells, which recruits and activates T2 and ILC2 cells. Correspondingly, cancer-cell-specific deletion of IL-33 reduces T2 and ILC2 recruitment and promotes tumor regression. Unexpectedly, IL-33 secretion is dependent on the intratumoral fungal mycobiome. Genetic deletion of IL-33 or anti-fungal treatment decreases T2 and ILC2 infiltration and increases survival. Consistently, high IL-33 expression is observed in approximately 20% of human PDAC, and expression is mainly restricted to cancer cells. These data expand our knowledge of the mechanisms driving PDAC tumor progression and identify therapeutically targetable pathways involving intratumoral mycobiome-driven secretion of IL-33.

摘要

2 型 T 细胞和先天淋巴细胞 2(ILC2)可以通过分泌促肿瘤细胞因子(如白细胞介素-4(IL-4)、IL-5 和 IL-13)来刺激肿瘤生长。然而,2 型免疫细胞向肿瘤微环境迁移的机制尚不清楚。在这里,我们表明致癌 Kras 增加了胰腺导管腺癌(PDAC)细胞中的 IL-33 表达,从而招募和激活了 2 型 T 细胞和 ILC2 细胞。相应地,癌细胞特异性缺失 IL-33 可减少 2 型 T 细胞和 ILC2 的募集并促进肿瘤消退。出乎意料的是,IL-33 的分泌依赖于肿瘤内真菌微生物组。IL-33 的基因缺失或抗真菌治疗可减少 2 型 T 细胞和 ILC2 的浸润并提高存活率。一致地,大约 20%的人类 PDAC 中观察到高表达的 IL-33,并且表达主要局限于癌细胞。这些数据扩展了我们对驱动 PDAC 肿瘤进展的机制的认识,并确定了涉及肿瘤内微生物组驱动的 IL-33 分泌的治疗靶点途径。

相似文献

1
Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer.
Cancer Cell. 2022 Feb 14;40(2):153-167.e11. doi: 10.1016/j.ccell.2022.01.003. Epub 2022 Feb 3.
2
T-cell programming in pancreatic adenocarcinoma: a review.
Cancer Gene Ther. 2017 Mar;24(3):106-113. doi: 10.1038/cgt.2016.66. Epub 2016 Dec 2.
3
T cells are necessary for ILC2 activation in house dust mite-induced allergic airway inflammation in mice.
Eur J Immunol. 2016 Jun;46(6):1392-403. doi: 10.1002/eji.201546119. Epub 2016 May 12.
6
The mycobiome-immune axis: The next frontier in pancreatic cancer.
Cancer Cell. 2022 Feb 14;40(2):120-122. doi: 10.1016/j.ccell.2022.01.009.
9
Hif1a Deletion Reveals Pro-Neoplastic Function of B Cells in Pancreatic Neoplasia.
Cancer Discov. 2016 Mar;6(3):256-69. doi: 10.1158/2159-8290.CD-15-0822. Epub 2015 Dec 29.
10
IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer.
Gut. 2018 Feb;67(2):320-332. doi: 10.1136/gutjnl-2016-311585. Epub 2016 Oct 21.

引用本文的文献

1
The multi-kingdom cancer microbiome.
Nat Microbiol. 2025 Sep 9. doi: 10.1038/s41564-025-02103-7.
4
The Human Mycobiome: Composition, Immune Interactions, and Impact on Disease.
Int J Mol Sci. 2025 Jul 28;26(15):7281. doi: 10.3390/ijms26157281.
5
The gut microbiota in cancer immunity and immunotherapy.
Cell Mol Immunol. 2025 Aug 6. doi: 10.1038/s41423-025-01326-2.
6
Cancer Vaccination and Immune-Based Approaches in Pancreatic Cancer.
Cancers (Basel). 2025 Jul 15;17(14):2356. doi: 10.3390/cancers17142356.
7
Advancements in understanding tumor-resident bacteria and their application in cancer therapy.
Mil Med Res. 2025 Jul 25;12(1):38. doi: 10.1186/s40779-025-00623-1.
9
Characteristics of cancer mycobiome in patients with acral melanoma.
J Immunother Cancer. 2025 Jul 15;13(7):e011097. doi: 10.1136/jitc-2024-011097.
10
The human microbiota: a double-edged sword against the 'Sword of Damocles' in PDAC diagnosis and therapy.
Front Oncol. 2025 Jun 26;15:1519277. doi: 10.3389/fonc.2025.1519277. eCollection 2025.

本文引用的文献

1
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
2
Nuclear IL-33/SMAD signaling axis promotes cancer development in chronic inflammation.
EMBO J. 2021 Apr 1;40(7):e106151. doi: 10.15252/embj.2020106151. Epub 2021 Feb 22.
3
A gene-environment-induced epigenetic program initiates tumorigenesis.
Nature. 2021 Feb;590(7847):642-648. doi: 10.1038/s41586-020-03147-x. Epub 2021 Feb 3.
6
Interleukin-33 Induces the Enzyme Tryptophan Hydroxylase 1 to Promote Inflammatory Group 2 Innate Lymphoid Cell-Mediated Immunity.
Immunity. 2020 Apr 14;52(4):606-619.e6. doi: 10.1016/j.immuni.2020.02.009. Epub 2020 Mar 10.
7
ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity.
Nature. 2020 Mar;579(7797):130-135. doi: 10.1038/s41586-020-2015-4. Epub 2020 Feb 19.
8
Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment.
Cancer Discov. 2020 Apr;10(4):608-625. doi: 10.1158/2159-8290.CD-19-0297. Epub 2020 Feb 11.
9
ILC2s: New Actors in Tumor Immunity.
Front Immunol. 2019 Dec 3;10:2801. doi: 10.3389/fimmu.2019.02801. eCollection 2019.
10
IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development.
Cell Rep. 2019 Dec 3;29(10):2998-3008.e8. doi: 10.1016/j.celrep.2019.10.120.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验