Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA.
Science. 2022 Feb 11;375(6581):681-686. doi: 10.1126/science.abg7216. Epub 2022 Feb 10.
Spatial omics emerged as a new frontier of biological and biomedical research. Here, we present spatial-CUT&Tag for spatially resolved genome-wide profiling of histone modifications by combining in situ CUT&Tag chemistry, microfluidic deterministic barcoding, and next-generation sequencing. Spatially resolved chromatin states in mouse embryos revealed tissue-type-specific epigenetic regulations in concordance with ENCODE references and provide spatial information at tissue scale. Spatial-CUT&Tag revealed epigenetic control of the cortical layer development and spatial patterning of cell types determined by histone modification in mouse brain. Single-cell epigenomes can be derived in situ by identifying 20-micrometer pixels containing only one nucleus using immunofluorescence imaging. Spatial chromatin modification profiling in tissue may offer new opportunities to study epigenetic regulation, cell function, and fate decision in normal physiology and pathogenesis.
空间组学成为生物学和生物医学研究的一个新前沿。在这里,我们提出了空间 CUT&Tag,通过将原位 CUT&Tag 化学、微流控确定性条形码和下一代测序相结合,实现了组蛋白修饰的空间分辨率全基因组分析。在小鼠胚胎中,空间分辨的染色质状态揭示了与 ENCODE 参考一致的组织特异性表观遗传调控,并提供了组织尺度的空间信息。空间 CUT&Tag 揭示了皮层层发育的表观遗传控制以及由小鼠大脑中组蛋白修饰决定的细胞类型的空间模式。通过使用免疫荧光成像鉴定仅包含一个细胞核的 20 微米像素,可以原位获得单细胞表观基因组。组织中的空间染色质修饰谱分析可能为研究正常生理和发病机制中的表观遗传调控、细胞功能和命运决定提供新的机会。