Suppr超能文献

利用计算方法对 SARS-CoV-2 进行药物重定位。

Drug repurposing against SARS-CoV-2 using computational approaches.

机构信息

Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India.

Department of Organic and Bioorganic Chemistry, State Scientific Institution 'Institute for Single Crystals', National Academy of Sciences of Ukraine, Nauky Ave. 60, Kharkiv 61001, Ukraine.

出版信息

Drug Discov Today. 2022 Jul;27(7):2015-2027. doi: 10.1016/j.drudis.2022.02.004. Epub 2022 Feb 10.

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has generated a critical need for treatments to reduce morbidity and mortality associated with this disease. However, traditional drug development takes many years, which is not practical solution given the current pandemic. Therefore, a viable option is to repurpose existing drugs. The structural data of several proteins vital for the virus became available shortly after the start of the pandemic. In this review, we discuss the importance of these targets and their available potential inhibitors predicted by the computational approaches. Among the hits identified by computational approaches, 35 candidates were suggested for further evaluation, among which ten drugs are in clinical trials (Phase III and IV) for treating Coronavirus 2019 (COVID-19).

摘要

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)大流行产生了对治疗方法的迫切需求,以降低与该疾病相关的发病率和死亡率。然而,传统的药物开发需要多年时间,鉴于当前的大流行,这不是一个可行的解决方案。因此,一个可行的选择是重新利用现有的药物。在大流行开始后不久,几种对病毒至关重要的蛋白质的结构数据就已经可用。在这篇综述中,我们讨论了这些靶点的重要性及其可用的潜在抑制剂,这些抑制剂是通过计算方法预测的。在计算方法识别的命中物中,有 35 个候选物被建议进一步评估,其中有 10 种药物正在进行治疗 2019 年冠状病毒病(COVID-19)的临床试验(III 期和 IV 期)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8003/8830191/0da7c355a430/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验