NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2117009119.
Gram-negative bacteria pose a serious public health concern due to resistance to many antibiotics, caused by the low permeability of their outer membrane (OM). Effective antibiotics use porins in the OM to reach the interior of the cell; thus, understanding permeation properties of OM porins is instrumental to rationally develop broad-spectrum antibiotics. A functionally important feature of OM porins is undergoing open-closed transitions that modulate their transport properties. To characterize the molecular basis of these transitions, we performed an extensive set of molecular dynamics (MD) simulations of OM porin OmpF. Markov-state analysis revealed that large-scale motion of an internal loop, L3, underlies the transition between energetically stable open and closed states. The conformation of L3 is controlled by H bonds between highly conserved acidic residues on the loop and basic residues on the OmpF -barrel. Mutation of key residues important for the loop's conformation shifts the equilibrium between open and closed states and regulates translocation of permeants (ions and antibiotics), as observed in the simulations and validated by our whole-cell accumulation assay. Notably, one mutant system G119D, which we find to favor the closed state, has been reported in clinically resistant bacterial strains. Overall, our accumulated ∼200 µs of simulation data (the wild type and mutants) along with experimental assays suggest the involvement of internal loop dynamics in permeability of OM porins and antibiotic resistance in Gram-negative bacteria.
由于革兰氏阴性菌的外膜(OM)的低通透性,导致它们对许多抗生素产生耐药性,因此对公共健康构成了严重威胁。有效的抗生素利用 OM 中的孔蛋白进入细胞内部;因此,了解 OM 孔蛋白的渗透特性对于合理开发广谱抗生素至关重要。OM 孔蛋白的一个功能重要的特征是进行开-闭转变,从而调节它们的传输特性。为了表征这些转变的分子基础,我们对 OM 孔蛋白 OmpF 进行了广泛的分子动力学(MD)模拟。Markov 状态分析表明,内部环 L3 的大规模运动是在能量稳定的开和闭状态之间转变的基础。L3 的构象由Loop 上高度保守的酸性残基与 OmpF -桶上的碱性残基之间的氢键控制。对Loop 构象重要的关键残基的突变会改变开和闭状态之间的平衡,并调节渗透物(离子和抗生素)的易位,这在模拟中观察到,并通过我们的全细胞积累测定得到验证。值得注意的是,我们发现有利于关闭状态的一个突变系统 G119D 已经在临床上耐药的细菌菌株中报道过。总的来说,我们积累了约 200 微秒的模拟数据(野生型和突变体)以及实验测定结果表明,内部环动力学参与了 OM 孔蛋白的通透性和革兰氏阴性菌的抗生素耐药性。