Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E0J9, Canada.
New World Laboratories, Laval, Quebec H7V 4A7, Canada.
J Neurosci. 2022 Apr 13;42(15):3096-3121. doi: 10.1523/JNEUROSCI.2177-21.2022. Epub 2022 Mar 7.
Traumatic spinal cord injury (SCI) is a leading cause of permanent neurologic disabilities in young adults. Functional impairments after SCI are substantially attributed to the progressive neurodegeneration. However, regeneration of spinal-specific neurons and circuit re-assembly remain challenging in the dysregulated milieu of SCI because of impaired neurogenesis and neuronal maturation by neural precursor cells (NPCs) spontaneously or in cell-based strategies. The extrinsic mechanisms that regulate neuronal differentiation and synaptogenesis in SCI are poorly understood. Here, we perform extensive and studies to unravel that SCI-induced upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) impedes neurogenesis of NPCs through co-activation of two receptor protein tyrosine phosphatases, LAR and PTPσ. In adult female rats with SCI, systemic co-inhibition of LAR and PTPσ promotes regeneration of motoneurons and spinal interneurons by engrafted human directly reprogramed caudalized NPCs (drNPC-O2) and fosters their morphologic maturity and synaptic connectivity within the host neural network that culminate in improved recovery of locomotion and sensorimotor integration. Our transcriptomic analysis of engrafted human NPCs in the injured spinal cord confirmed that inhibition of CSPG receptors activates a comprehensive program of gene expression in NPCs that can support neuronal differentiation, maturation, morphologic complexity, signal transmission, synaptic plasticity, and behavioral improvement after SCI. We uncovered that CSPG/LAR/PTPσ axis suppresses neuronal differentiation in part by blocking Wnt/β-Catenin pathway. Taken together, we provide the first evidence that CSPGs/LAR/PTPσ axis restricts neurogenesis and synaptic integration of new neurons in NPC cellular therapies for SCI. We propose targeting LAR and PTPσ receptors offers a promising clinically-feasible adjunct treatment to optimize the efficacy and neurologic benefits of ongoing NPC-based clinical trials for SCI. Transplantation of neural precursor cells (NPCs) is a promising approach for replacing damaged neurons after spinal cord injury (SCI). However, survival, neuronal differentiation, and synaptic connectivity of transplanted NPCs within remain challenging in SCI. Here, we unravel that activation of chondroitin sulfate proteoglycan (CSPG)/LAR/PTPσ axis after SCI impedes the capacity of transplanted human NPCs for replacing functionally integrated neurons. Co-blockade of LAR and PTPσ is sufficient to promote re-generation of motoneurons and spinal V1 and V3 interneurons by engrafted human caudalized directly reprogramed NPCs (drNPC-O2) and facilitate their synaptic integration within the injured spinal cord. CSPG/LAR/PTPσ axis appears to suppress neuronal differentiation of NPCs by inhibiting Wnt/β-Catenin pathway. These findings identify targeting CSPG/LAR/PTPσ axis as a promising strategy for optimizing neuronal replacement, synaptic re-connectivity, and neurologic recovery in NPC-based strategies.
创伤性脊髓损伤 (SCI) 是导致年轻成年人永久性神经功能障碍的主要原因。SCI 后的功能障碍主要归因于神经退行性变的进行性发展。然而,由于神经前体细胞 (NPC) 自发或通过细胞策略导致的神经发生和神经元成熟受损,脊髓特异性神经元的再生和回路重新组装仍然具有挑战性。调节 SCI 中神经元分化和突触发生的外在机制知之甚少。在这里,我们进行了广泛的研究,以揭示 SCI 诱导的基质软骨素硫酸蛋白聚糖 (CSPG) 的上调通过共激活两个受体蛋白酪氨酸磷酸酶,LAR 和 PTPσ,阻碍 NPC 的神经发生。在 SCI 成年雌性大鼠中,全身共抑制 LAR 和 PTPσ 通过移植人尾侧化直接重编程 NPC(drNPC-O2)促进运动神经元和脊髓中间神经元的再生,并促进其在宿主神经网络内的形态成熟和突触连接,最终改善运动和感觉运动整合的恢复。我们对损伤脊髓中移植的人 NPC 的转录组分析证实,抑制 CSPG 受体可激活 NPC 中全面的基因表达程序,该程序可支持神经元分化、成熟、形态复杂性、信号转导、突触可塑性和 SCI 后的行为改善。我们发现 CSPG/LAR/PTPσ 轴通过阻断 Wnt/β-连环蛋白途径部分抑制神经元分化。总之,我们提供了第一个证据,即 CSPGs/LAR/PTPσ 轴限制了 NPC 细胞治疗 SCI 中新神经元的神经发生和突触整合。我们提出靶向 LAR 和 PTPσ 受体为优化正在进行的基于 NPC 的 SCI 临床试验的疗效和神经益处提供了一种有前途的临床可行的辅助治疗方法。神经前体细胞 (NPC) 的移植是替代脊髓损伤 (SCI) 后受损神经元的一种有前途的方法。然而,移植 NPC 在 SCI 中的存活、神经元分化和突触连接仍然具有挑战性。在这里,我们揭示了 SCI 后 CSPG/LAR/PTPσ 轴的激活阻碍了移植的人 NPC 替代功能整合神经元的能力。共抑制 LAR 和 PTPσ 足以促进移植的人尾侧化直接重编程 NPC(drNPC-O2)的运动神经元和脊髓 V1 和 V3 中间神经元的再生,并促进它们在损伤脊髓内的突触整合。CSPG/LAR/PTPσ 轴似乎通过抑制 Wnt/β-连环蛋白途径抑制 NPC 的神经元分化。这些发现确定了靶向 CSPG/LAR/PTPσ 轴作为优化基于 NPC 的策略中的神经元替代、突触再连接和神经恢复的有前途的策略。