Suppr超能文献

IRAK4 信号通路驱动胰腺导管腺癌对免疫检查点治疗的耐药性。

IRAK4 Signaling Drives Resistance to Checkpoint Immunotherapy in Pancreatic Ductal Adenocarcinoma.

机构信息

Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri.

Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.

出版信息

Gastroenterology. 2022 Jun;162(7):2047-2062. doi: 10.1053/j.gastro.2022.02.035. Epub 2022 Mar 7.

Abstract

BACKGROUND & AIMS: Checkpoint immunotherapy is largely ineffective in pancreatic ductal adenocarcinoma (PDAC). The innate immune nuclear factor (NF)-κB pathway promotes PDAC cell survival and stromal fibrosis, and is driven by Interleukin-1 Receptor Associated Kinase-4 (IRAK4), but its impact on tumor immunity has not been directly investigated.

METHODS

We interrogated The Cancer Genome Atlas data to identify the correlation between NF-κB and T cell signature, and a PDAC tissue microarray (TMA) to correlate IRAK4 activity with CD8 T cell abundance. We performed RNA sequencing (RNA-seq) on IRAK4-deleted PDAC cells, and single-cell RNA-seq on autochthonous KPC (p48-Cre/TP53/LSL-KRAS) mice treated with an IRAK4 inhibitor. We generated conditional IRAK4-deleted KPC mice and complementarily used IRAK4 inhibitors to determine the impact of IRAK4 on T cell immunity.

RESULTS

We found positive correlation between NF-κB activity, IRAK4 and T cell exhaustion from The Cancer Genome Atlas. We observed inverse correlation between phosphorylated IRAK4 and CD8 T cell abundance in a PDAC tissue microarray. Loss of IRAK4 abrogates NF-κB activity, several immunosuppressive factors, checkpoint ligands, and hyaluronan synthase 2, all of which drive T cell dysfunction. Accordingly, conditional deletion or pharmacologic inhibition of IRAK4 markedly decreased tumor desmoplasia and increased the abundance and activity of infiltrative CD4 and CD8 T cells in KPC tumors. Single-cell RNA-seq showed myeloid and fibroblast reprogramming toward acute inflammatory responses following IRAK4 inhibition. These changes set the stage for successful combination of IRAK4 inhibitors with checkpoint immunotherapy, resulting in excellent tumor control and markedly prolonged survival of KPC mice.

CONCLUSION

IRAK4 drives T cell dysfunction in PDAC and is a novel, promising immunotherapeutic target.

摘要

背景与目的

在胰腺导管腺癌(PDAC)中,检查点免疫疗法的效果大多不佳。先天免疫核因子(NF)-κB 途径促进 PDAC 细胞存活和基质纤维化,并由白细胞介素-1 受体相关激酶-4(IRAK4)驱动,但它对肿瘤免疫的影响尚未被直接研究。

方法

我们分析了癌症基因组图谱(TCGA)的数据,以确定 NF-κB 与 T 细胞特征之间的相关性,并通过 PDAC 组织微阵列(TMA)来关联 IRAK4 活性与 CD8 T 细胞丰度。我们对 IRAK4 缺失的 PDAC 细胞进行了 RNA 测序(RNA-seq),并对用 IRAK4 抑制剂治疗的自发性 KPC(p48-Cre/TP53/LSL-KRAS)小鼠进行了单细胞 RNA-seq。我们生成了条件性 IRAK4 缺失的 KPC 小鼠,并互补性地使用 IRAK4 抑制剂来确定 IRAK4 对 T 细胞免疫的影响。

结果

我们从 TCGA 中发现 NF-κB 活性、IRAK4 和 T 细胞耗竭之间存在正相关。我们在 PDAC TMA 中观察到磷酸化 IRAK4 与 CD8 T 细胞丰度呈负相关。IRAK4 的缺失消除了 NF-κB 的活性、几种免疫抑制因子、检查点配体和透明质酸合酶 2,所有这些都驱动 T 细胞功能障碍。因此,条件性 IRAK4 缺失或药理学抑制 IRAK4 显著减少了 KPC 肿瘤的肿瘤性纤维化,并增加了浸润性 CD4 和 CD8 T 细胞的丰度和活性。单细胞 RNA-seq 显示,在 IRAK4 抑制后,髓样细胞和成纤维细胞向急性炎症反应重编程。这些变化为 IRAK4 抑制剂与检查点免疫疗法的成功联合奠定了基础,导致 KPC 小鼠的肿瘤控制显著改善,生存时间显著延长。

结论

IRAK4 驱动 PDAC 中的 T 细胞功能障碍,是一种新的、有前途的免疫治疗靶点。

相似文献

1
IRAK4 Signaling Drives Resistance to Checkpoint Immunotherapy in Pancreatic Ductal Adenocarcinoma.
Gastroenterology. 2022 Jun;162(7):2047-2062. doi: 10.1053/j.gastro.2022.02.035. Epub 2022 Mar 7.
2
Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer.
Gastroenterology. 2020 Jul;159(1):306-319.e12. doi: 10.1053/j.gastro.2020.03.018. Epub 2020 Mar 14.
3
Constitutive IRAK4 Activation Underlies Poor Prognosis and Chemoresistance in Pancreatic Ductal Adenocarcinoma.
Clin Cancer Res. 2017 Apr 1;23(7):1748-1759. doi: 10.1158/1078-0432.CCR-16-1121. Epub 2016 Oct 4.
4
Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy.
Nat Med. 2016 Aug;22(8):851-60. doi: 10.1038/nm.4123. Epub 2016 Jul 4.
6
IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer.
Gut. 2018 Feb;67(2):320-332. doi: 10.1136/gutjnl-2016-311585. Epub 2016 Oct 21.
7
Exclusion of T Cells From Pancreatic Carcinomas in Mice Is Regulated by Ly6C(low) F4/80(+) Extratumoral Macrophages.
Gastroenterology. 2015 Jul;149(1):201-10. doi: 10.1053/j.gastro.2015.04.010. Epub 2015 Apr 14.
8
Tumor-Stroma IL1β-IRAK4 Feedforward Circuitry Drives Tumor Fibrosis, Chemoresistance, and Poor Prognosis in Pancreatic Cancer.
Cancer Res. 2018 Apr 1;78(7):1700-1712. doi: 10.1158/0008-5472.CAN-17-1366. Epub 2018 Jan 23.

引用本文的文献

3
Identification of a novel prognostic marker ADGRG6 in pancreatic adenocarcinoma: multi-omics analysis and experimental validation.
Front Immunol. 2025 Mar 27;16:1530789. doi: 10.3389/fimmu.2025.1530789. eCollection 2025.
4
Cancer associated fibroblasts in cancer development and therapy.
J Hematol Oncol. 2025 Mar 28;18(1):36. doi: 10.1186/s13045-025-01688-0.
5
BAP1 Represses Sequential Activation of IRAKs and NF-κB Signaling in Pancreatic Cancer.
Int J Biol Sci. 2025 Feb 18;21(5):1949-1965. doi: 10.7150/ijbs.104977. eCollection 2025.
6
Targeting protein modification: a new direction for immunotherapy of pancreatic cancer.
Int J Biol Sci. 2025 Jan 1;21(1):63-74. doi: 10.7150/ijbs.101861. eCollection 2025.
7
Smoking-Associated Carcinogen-Induced Inflammation Promotes Lung Carcinogenesis via IRAK4 Activation.
Clin Cancer Res. 2025 Feb 17;31(4):746-755. doi: 10.1158/1078-0432.CCR-24-2182.
8
Identification of VISTA regulators in macrophages mediating cancer cell survival.
Sci Adv. 2024 Nov 29;10(48):eadq8122. doi: 10.1126/sciadv.adq8122. Epub 2024 Nov 27.
10
Hsp90α promotes chemoresistance in pancreatic cancer by regulating Keap1-Nrf2 axis and inhibiting ferroptosis.
Acta Biochim Biophys Sin (Shanghai). 2024 Aug 22;57(2):295-309. doi: 10.3724/abbs.2024138.

本文引用的文献

1
The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer.
Cancer Cell. 2021 Oct 11;39(10):1342-1360.e14. doi: 10.1016/j.ccell.2021.07.007. Epub 2021 Aug 5.
3
Type I collagen deletion in αSMA myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer.
Cancer Cell. 2021 Apr 12;39(4):548-565.e6. doi: 10.1016/j.ccell.2021.02.007. Epub 2021 Mar 4.
5
TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations.
J Clin Invest. 2020 Sep 1;130(9):4771-4790. doi: 10.1172/JCI137660.
6
The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities.
Nat Rev Clin Oncol. 2020 Sep;17(9):527-540. doi: 10.1038/s41571-020-0363-5. Epub 2020 May 12.
7
Pancreatic cancer stroma: an update on therapeutic targeting strategies.
Nat Rev Gastroenterol Hepatol. 2020 Aug;17(8):487-505. doi: 10.1038/s41575-020-0300-1. Epub 2020 May 11.
8
Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle.
Semin Cancer Biol. 2020 Oct;65:38-50. doi: 10.1016/j.semcancer.2020.01.002. Epub 2020 Jan 15.
9
10
Tertiary lymphoid structures in the era of cancer immunotherapy.
Nat Rev Cancer. 2019 Jun;19(6):307-325. doi: 10.1038/s41568-019-0144-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验