Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
Chembiochem. 2022 Jul 5;23(13):e202100625. doi: 10.1002/cbic.202100625. Epub 2022 Mar 21.
The malfunction and misregulation of voltage-gated sodium channels (Na s) underlie in large part the electrical hyperexcitability characteristic of chronic inflammatory and neuropathic pain. Na s are responsible for the initiation and propagation of electrical impulses (action potentials) in cells. Tissue and nerve injury alter the expression and localization of multiple Na isoforms, including Na 1.1, 1.3, and 1.6-1.9, resulting in aberrant action potential firing patterns. To better understand the role of Na regulation, localization, and trafficking in electrogenesis and pain pathogenesis, a number of chemical and biological reagents for interrogating Na function have been advanced. The development and application of such tools for understanding Na physiology are the focus of this review.
电压门控钠离子通道(Na v )的功能障碍和调控失常在很大程度上是慢性炎症性和神经性疼痛的电兴奋性特征的基础。Na v 负责细胞中电脉冲(动作电位)的启动和传播。组织和神经损伤改变了多种 Na 亚型的表达和定位,包括 Na 1.1、1.3 和 1.6-1.9,导致异常的动作电位发放模式。为了更好地理解 Na 调节、定位和运输在发电和疼痛发病机制中的作用,已经开发出了许多用于研究 Na 功能的化学和生物试剂。本综述的重点是了解 Na 生理学的这些工具的开发和应用。