Suppr超能文献

通过过表达 Pparγ 促进脂肪生成有助于洞穴鱼适应食物匮乏。

Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity.

机构信息

Stowers Institute for Medical Research, Kansas City, MO 64110, USA.

Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, Kansas City, MO 64110, USA; National Institute of Biological Sciences, Beijing 102206, China.

出版信息

Curr Biol. 2022 May 23;32(10):2272-2280.e6. doi: 10.1016/j.cub.2022.03.038. Epub 2022 Apr 6.

Abstract

Nutrient availability varies seasonally and spatially in the wild. While many animals, such as hibernating animals or migrating birds, evolved strategies to overcome periods of nutrient scarcity, the cellular mechanisms of these strategies are poorly understood. Cave environments represent an example of nutrient-deprived environments, since the lack of sunlight and therefore primary energy production drastically diminishes the nutrient availability. Here, we used Astyanax mexicanus, which includes river-dwelling surface fish and cave-adapted cavefish populations, to study the genetic adaptation to nutrient limitations. We show that cavefish populations store large amounts of fat in different body regions when fed ad libitum in the lab. We found higher expression of lipogenesis genes in cavefish livers when fed the same amount of food as surface fish, suggesting an improved ability of cavefish to use lipogenesis to convert available energy into triglycerides for storage into adipose tissue. Moreover, the lipid metabolism regulator, peroxisome proliferator-activated receptor γ (Pparγ), is upregulated at both transcript and protein levels in cavefish livers. Chromatin immunoprecipitation sequencing (ChIP-seq) showed that Pparγ binds cavefish promoter regions of genes to a higher extent than surface fish and inhibiting Pparγ in vivo decreases fat accumulation in A. mexicanus. Finally, we identified nonsense mutations in per2, a known repressor of Pparγ, providing a possible regulatory mechanism of Pparγ in cavefish. Taken together, our study reveals that upregulated Pparγ promotes higher levels of lipogenesis in the liver and contributes to higher body fat accumulation in cavefish populations, an important adaptation to nutrient-limited environments.

摘要

在野外,营养物质的可利用性会随季节和空间而变化。虽然许多动物,如冬眠动物或迁徙鸟类,已经进化出了克服营养匮乏期的策略,但这些策略的细胞机制还知之甚少。洞穴环境就是营养物质匮乏环境的一个例子,因为缺乏阳光,从而大大减少了初级能源的产生,这使得营养物质的可利用性降低。在这里,我们使用包括河流栖居的表层鱼类和适应洞穴的洞穴鱼类种群的 Astyanax mexicanus,来研究对营养限制的遗传适应。我们表明,当在实验室中自由喂食时,洞穴鱼类会在不同的身体部位储存大量脂肪。我们发现,当给予与表层鱼类相同数量的食物时,洞穴鱼类肝脏中的脂肪生成基因表达更高,这表明洞穴鱼类能够更好地利用脂肪生成将可用能量转化为甘油三酯,以便储存到脂肪组织中。此外,脂质代谢调节剂过氧化物酶体增殖物激活受体 γ(Pparγ)在洞穴鱼类肝脏中的转录本和蛋白质水平都上调。染色质免疫沉淀测序(ChIP-seq)显示,Pparγ在洞穴鱼类的基因启动子区域的结合程度高于表层鱼类,并且在体内抑制 Pparγ 会减少 A. mexicanus 中的脂肪积累。最后,我们在 per2 中发现了无意义突变,per2 是 Pparγ 的已知抑制剂,为洞穴鱼类中 Pparγ 的可能调控机制提供了证据。总之,我们的研究表明,上调的 Pparγ 促进了肝脏中更高水平的脂肪生成,并有助于洞穴鱼类种群中更高的体脂肪积累,这是对营养有限环境的重要适应。

相似文献

1
Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity.
Curr Biol. 2022 May 23;32(10):2272-2280.e6. doi: 10.1016/j.cub.2022.03.038. Epub 2022 Apr 6.
2
Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9668-73. doi: 10.1073/pnas.1510802112. Epub 2015 Jul 13.
3
Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus.
Dev Biol. 2018 Sep 15;441(2):297-304. doi: 10.1016/j.ydbio.2018.06.003. Epub 2018 Jun 5.
4
Genetic architecture underlying changes in carotenoid accumulation during the evolution of the blind Mexican cavefish, Astyanax mexicanus.
J Exp Zool B Mol Dev Evol. 2020 Nov;334(7-8):405-422. doi: 10.1002/jez.b.22954. Epub 2020 Jun 2.
5
Reproductive Adaptation of Under Nutrient Limitation.
bioRxiv. 2025 Feb 17:2025.02.13.638191. doi: 10.1101/2025.02.13.638191.
6
Reproductive adaptation of Astyanax mexicanus under nutrient limitation.
Dev Biol. 2025 Jul;523:82-98. doi: 10.1016/j.ydbio.2025.04.006. Epub 2025 Apr 11.
7
Genome-wide analysis of cis-regulatory changes underlying metabolic adaptation of cavefish.
Nat Genet. 2022 May;54(5):684-693. doi: 10.1038/s41588-022-01049-4. Epub 2022 May 12.

引用本文的文献

1
Evolutionary ecophysiology in extreme environments under a global change scenario.
Conserv Physiol. 2025 Aug 11;13(1):coaf059. doi: 10.1093/conphys/coaf059. eCollection 2025.
2
A repeatedly evolved mutation in Cryptochrome-1 of subterranean animals alters behavioral and molecular circadian rhythms.
iScience. 2025 Jun 12;28(7):112874. doi: 10.1016/j.isci.2025.112874. eCollection 2025 Jul 18.
4
The Role of Alternative Splicing in Marine-Freshwater Divergence in Threespine Stickleback.
Genome Biol Evol. 2025 May 30;17(6). doi: 10.1093/gbe/evaf105.
5
Reproductive adaptation of Astyanax mexicanus under nutrient limitation.
Dev Biol. 2025 Jul;523:82-98. doi: 10.1016/j.ydbio.2025.04.006. Epub 2025 Apr 11.
6
Rumen microbiota regulates IMF deposition in Xizang sheep by activating the transcription factor: a rumen-muscle axis perspective.
mSystems. 2025 Apr 22;10(4):e0155724. doi: 10.1128/msystems.01557-24. Epub 2025 Mar 28.
8
9
ASPP2 deficiency attenuates lipid accumulation through the PPARγ pathway in alcoholic liver injury.
Cell Biol Toxicol. 2024 Nov 22;40(1):102. doi: 10.1007/s10565-024-09925-x.
10
A complex mechanism translating variation of a simple genetic architecture into alternative life histories.
Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2402386121. doi: 10.1073/pnas.2402386121. Epub 2024 Nov 19.

本文引用的文献

1
Repeated evolution of circadian clock dysregulation in cavefish populations.
PLoS Genet. 2021 Jul 12;17(7):e1009642. doi: 10.1371/journal.pgen.1009642. eCollection 2021 Jul.
2
JASPAR 2020: update of the open-access database of transcription factor binding profiles.
Nucleic Acids Res. 2020 Jan 8;48(D1):D87-D92. doi: 10.1093/nar/gkz1001.
3
Ensembl 2020.
Nucleic Acids Res. 2020 Jan 8;48(D1):D682-D688. doi: 10.1093/nar/gkz966.
4
Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
Nat Commun. 2019 Apr 3;10(1):1523. doi: 10.1038/s41467-019-09234-6.
5
Antarctic blackfin icefish genome reveals adaptations to extreme environments.
Nat Ecol Evol. 2019 Mar;3(3):469-478. doi: 10.1038/s41559-019-0812-7. Epub 2019 Feb 25.
6
The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus.
Mol Ecol. 2018 Nov;27(22):4397-4416. doi: 10.1111/mec.14877. Epub 2018 Oct 16.
7
Development of the Astyanax mexicanus circadian clock and non-visual light responses.
Dev Biol. 2018 Sep 15;441(2):345-354. doi: 10.1016/j.ydbio.2018.06.008. Epub 2018 Jun 23.
8
Mutations in blind cavefish target the light-regulated circadian clock gene, period 2.
Sci Rep. 2018 Jun 8;8(1):8754. doi: 10.1038/s41598-018-27080-2.
9
Morphogenesis and motility of the Astyanax mexicanus gastrointestinal tract.
Dev Biol. 2018 Sep 15;441(2):285-296. doi: 10.1016/j.ydbio.2018.06.004. Epub 2018 Jun 6.
10
Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus.
Dev Biol. 2018 Sep 15;441(2):297-304. doi: 10.1016/j.ydbio.2018.06.003. Epub 2018 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验