Dai James Y, Stanford Janet L, LeBlanc Michael
Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.
J Am Stat Assoc. 2022;117(537):198-213. doi: 10.1080/01621459.2020.1765785. Epub 2020 Jun 24.
Mediation analysis is of rising interest in epidemiology and clinical trials. Among existing methods, the joint significance (JS) test yields an overly conservative type I error rate and low power, particularly for high-dimensional mediation hypotheses. In this article we develop a multiple-testing procedure that accurately controls the family-wise error rate (FWER) and the false discovery rate (FDR) when testing high-dimensional mediation hypotheses. The core of our procedure is based on estimating the proportions of component null hypotheses and the underlying mixture null distribution of p-values. Theoretical developments and simulation experiments prove that the proposed procedure effectively controls FWER and FDR. Two mediation analyses on DNA methylation and cancer research are presented: assessing the mediation role of DNA methylation in genLetic regulation of gene expression in primary prostate cancer samples; exploring the possibility of DNA methylation mediating the effect of exercise on prostate cancer progression. Results of data examples include wellL-behaved quantile-quantile plots and improved power to detect novel mediation relationships. An R package HDMT implementing the proposed procedure is freely accessible in CRAN.
中介分析在流行病学和临床试验中越来越受到关注。在现有方法中,联合显著性(JS)检验会产生过度保守的I型错误率和低功效,特别是对于高维中介假设。在本文中,我们开发了一种多重检验程序,在检验高维中介假设时能准确控制家族性错误率(FWER)和错误发现率(FDR)。我们程序的核心基于估计成分零假设的比例以及p值的潜在混合零分布。理论发展和模拟实验证明,所提出的程序能有效控制FWER和FDR。本文给出了两项关于DNA甲基化和癌症研究的中介分析:评估DNA甲基化在原发性前列腺癌样本中基因表达的遗传调控中的中介作用;探索DNA甲基化介导运动对前列腺癌进展影响的可能性。数据实例的结果包括表现良好的分位数 - 分位数图以及提高了检测新中介关系的功效。一个实现所提出程序的R包HDMT可在CRAN上免费获取。