Suppr超能文献

配体-受体混杂性实现细胞靶向。

Ligand-receptor promiscuity enables cellular addressing.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

Department of Physics, University of Chicago, Chicago, IL 60637, USA.

出版信息

Cell Syst. 2022 May 18;13(5):408-425.e12. doi: 10.1016/j.cels.2022.03.001. Epub 2022 Apr 13.

Abstract

In multicellular organisms, secreted ligands selectively activate, or "address," specific target cell populations to control cell fate decision-making and other processes. Key cell-cell communication pathways use multiple promiscuously interacting ligands and receptors, provoking the question of how addressing specificity can emerge from molecular promiscuity. To investigate this issue, we developed a general mathematical modeling framework based on the bone morphogenetic protein (BMP) pathway architecture. We find that promiscuously interacting ligand-receptor systems allow a small number of ligands, acting in combinations, to address a larger number of individual cell types, defined by their receptor expression profiles. Promiscuous systems outperform seemingly more specific one-to-one signaling architectures in addressing capability. Combinatorial addressing extends to groups of cell types, is robust to receptor expression noise, grows more powerful with increases in the number of receptor variants, and is maximized by specific biochemical parameter relationships. Together, these results identify design principles governing cellular addressing by ligand combinations.

摘要

在多细胞生物中,分泌配体选择性地激活或“寻址”特定的靶细胞群体,以控制细胞命运决策和其他过程。关键的细胞间通讯途径使用多种随意相互作用的配体和受体,引发了这样一个问题,即寻址特异性如何从分子随意性中出现。为了研究这个问题,我们基于骨形态发生蛋白(BMP)途径结构,开发了一个通用的数学建模框架。我们发现,随意相互作用的配体-受体系统允许少数配体以组合的形式作用,以寻址由其受体表达谱定义的更大数量的单个细胞类型。随意的系统在寻址能力方面优于看似更具体的一对一信号转导结构。组合寻址扩展到细胞类型组,对受体表达噪声具有鲁棒性,随着受体变体数量的增加而变得更强大,并且通过特定的生化参数关系达到最大化。总之,这些结果确定了配体组合控制细胞寻址的设计原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff72/10897978/973ce2913955/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验