Suppr超能文献

ZDHHC18 通过棕榈酰化负调控 cGAS 介导的先天免疫。

ZDHHC18 negatively regulates cGAS-mediated innate immunity through palmitoylation.

机构信息

School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.

Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.

出版信息

EMBO J. 2022 Jun 1;41(11):e109272. doi: 10.15252/embj.2021109272. Epub 2022 Apr 19.

Abstract

Double-stranded DNA is recognized as a danger signal by cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), triggering innate immune responses. Palmitoylation is an important post-translational modification (PTM) catalyzed by DHHC-palmitoyl transferases, which participate in the regulation of diverse biological processes. However, whether palmitoylation regulates cGAS function has not yet been explored. Here, we found that palmitoylation of cGAS at C474 restricted its enzymatic activity in the presence of double-stranded DNA. cGAS palmitoylation was catalyzed mainly by the palmitoyltransferase ZDHHC18 and double-stranded DNA promoted this modification. Mechanistically, palmitoylation of cGAS reduced the interaction between cGAS and double-stranded DNA, further inhibiting cGAS dimerization. Consistently, ZDHHC18 negatively regulated cGAS activation in human and mouse cell lines. In a more biologically relevant model system, Zdhhc18-deficient mice were found to be resistant to infection by DNA viruses, in agreement with the observation that ZDHHC18 negatively regulated cGAS mediated innate immune responses in human and mouse primary cells. In summary, the negative role of ZDHHC18-mediated cGAS palmitoylation may be a novel regulatory mechanism in the fine-tuning of innate immunity.

摘要

双链 DNA 被环鸟苷酸-腺苷酸合酶 (cGAS) 识别为危险信号,触发先天免疫反应。棕榈酰化是由 DHHC-棕榈酰转移酶催化的一种重要的翻译后修饰 (PTM),参与调节多种生物过程。然而,棕榈酰化是否调节 cGAS 功能尚未得到探索。在这里,我们发现 cGAS 在 C474 处的棕榈酰化限制了其在双链 DNA 存在下的酶活性。cGAS 的棕榈酰化主要由棕榈酰转移酶 ZDHHC18 催化,双链 DNA 促进了这种修饰。在机制上,cGAS 的棕榈酰化减少了 cGAS 与双链 DNA 之间的相互作用,进一步抑制了 cGAS 二聚化。一致地,ZDHHC18 在人源和鼠源细胞系中负调控 cGAS 的激活。在一个更具生物学相关性的模型系统中,发现 Zdhhc18 缺陷型小鼠对 DNA 病毒感染具有抗性,这与 ZDHHC18 负调控人源和鼠源原代细胞中 cGAS 介导的先天免疫反应的观察结果一致。总之,ZDHHC18 介导的 cGAS 棕榈酰化的负调控作用可能是先天免疫精细调节的一种新的调控机制。

相似文献

1
ZDHHC18 negatively regulates cGAS-mediated innate immunity through palmitoylation.
EMBO J. 2022 Jun 1;41(11):e109272. doi: 10.15252/embj.2021109272. Epub 2022 Apr 19.
2
USP15 promotes cGAS activation through deubiquitylation and liquid condensation.
Nucleic Acids Res. 2022 Oct 28;50(19):11093-11108. doi: 10.1093/nar/gkac823.
3
When pyro(ptosis) meets palm(itoylation).
Cytokine Growth Factor Rev. 2024 Jun;77:30-38. doi: 10.1016/j.cytogfr.2024.03.001. Epub 2024 Mar 4.
4
4-Octyl itaconate restricts STING activation by blocking its palmitoylation.
Cell Rep. 2023 Sep 26;42(9):113040. doi: 10.1016/j.celrep.2023.113040. Epub 2023 Aug 24.
6
MARCH8 attenuates cGAS-mediated innate immune responses through ubiquitylation.
Sci Signal. 2022 May 3;15(732):eabk3067. doi: 10.1126/scisignal.abk3067.
7
Palmitoylation of MDH2 by ZDHHC18 activates mitochondrial respiration and accelerates ovarian cancer growth.
Sci China Life Sci. 2022 Oct;65(10):2017-2030. doi: 10.1007/s11427-021-2048-2. Epub 2022 Mar 25.
8
The multifaceted functions of cGAS.
J Mol Cell Biol. 2022 Sep 15;14(5). doi: 10.1093/jmcb/mjac031.
9
BAF restricts cGAS on nuclear DNA to prevent innate immune activation.
Science. 2020 Aug 14;369(6505):823-828. doi: 10.1126/science.aaw6421.
10
Ubiquitination of cGAS by TRAF6 regulates anti-DNA viral innate immune responses.
Biochem Biophys Res Commun. 2019 Jun 30;514(3):659-664. doi: 10.1016/j.bbrc.2019.05.022. Epub 2019 May 8.

引用本文的文献

1
Recent advances in S-palmitoylation and its emerging roles in human diseases.
J Hematol Oncol. 2025 Sep 1;18(1):83. doi: 10.1186/s13045-025-01738-7.
3
Palmitoylation: an emerging therapeutic target bridging physiology and disease.
Cell Mol Biol Lett. 2025 Aug 15;30(1):98. doi: 10.1186/s11658-025-00776-w.
4
Palmitic acid and palmitoylation in cancer: Understanding, insights, and challenges.
Innovation (Camb). 2025 Apr 29;6(8):100918. doi: 10.1016/j.xinn.2025.100918. eCollection 2025 Aug 4.
5
Unlocking the therapeutic potential of the STING signaling pathway in anti-tumor treatment.
Clin Exp Med. 2025 Aug 12;25(1):290. doi: 10.1007/s10238-025-01838-1.
6
Role of S-palmitoylation in digestive system diseases.
Cell Death Discov. 2025 Jul 18;11(1):331. doi: 10.1038/s41420-025-02629-z.
7
The function and mechanism of protein acylation in the regulation of viral infection.
Virulence. 2025 Dec;16(1):2530171. doi: 10.1080/21505594.2025.2530171. Epub 2025 Jul 17.
8
Immune Dysregulation and Prognosis in Sepsis: Insights From a Posttranslational Perspective.
Hum Mutat. 2025 Jul 8;2025:5503939. doi: 10.1155/humu/5503939. eCollection 2025.
9
cGAS, an innate dsDNA sensor with multifaceted functions.
Cell Insight. 2025 Apr 17;4(3):100249. doi: 10.1016/j.cellin.2025.100249. eCollection 2025 Jun.
10
Exploring the role of palmitoylation in sepsis: mechanistic insights and future perspectives.
Mol Med. 2025 Jun 3;31(1):217. doi: 10.1186/s10020-025-01284-5.

本文引用的文献

2
Arginine methyltransferase PRMT5 negatively regulates cGAS-mediated antiviral immune response.
Sci Adv. 2021 Mar 24;7(13). doi: 10.1126/sciadv.abc1834. Print 2021 Mar.
3
Phosphorylation and chromatin tethering prevent cGAS activation during mitosis.
Science. 2021 Mar 19;371(6535). doi: 10.1126/science.abc5386. Epub 2021 Feb 4.
4
A STAT3 palmitoylation cycle promotes T17 differentiation and colitis.
Nature. 2020 Oct;586(7829):434-439. doi: 10.1038/s41586-020-2799-2. Epub 2020 Oct 7.
5
Structural basis of nucleosome-dependent cGAS inhibition.
Science. 2020 Oct 23;370(6515):450-454. doi: 10.1126/science.abd0609. Epub 2020 Sep 10.
6
Structural basis for the inhibition of cGAS by nucleosomes.
Science. 2020 Oct 23;370(6515):455-458. doi: 10.1126/science.abd0237. Epub 2020 Sep 10.
7
Structural mechanism of cGAS inhibition by the nucleosome.
Nature. 2020 Nov;587(7835):668-672. doi: 10.1038/s41586-020-2750-6. Epub 2020 Sep 10.
8
The molecular basis of tight nuclear tethering and inactivation of cGAS.
Nature. 2020 Nov;587(7835):673-677. doi: 10.1038/s41586-020-2749-z. Epub 2020 Sep 10.
9
Structural basis for sequestration and autoinhibition of cGAS by chromatin.
Nature. 2020 Nov;587(7835):678-682. doi: 10.1038/s41586-020-2748-0. Epub 2020 Sep 10.
10
mtDNA Activates cGAS Signaling and Suppresses the YAP-Mediated Endothelial Cell Proliferation Program to Promote Inflammatory Injury.
Immunity. 2020 Mar 17;52(3):475-486.e5. doi: 10.1016/j.immuni.2020.02.002. Epub 2020 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验