Suppr超能文献

用于可解释机器学习的Shapley变量重要性云图

Shapley variable importance cloud for interpretable machine learning.

作者信息

Ning Yilin, Ong Marcus Eng Hock, Chakraborty Bibhas, Goldstein Benjamin Alan, Ting Daniel Shu Wei, Vaughan Roger, Liu Nan

机构信息

Centre for Quantitative Medicine, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.

Programme in Health Services and Systems Research, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.

出版信息

Patterns (N Y). 2022 Feb 22;3(4):100452. doi: 10.1016/j.patter.2022.100452. eCollection 2022 Apr 8.

Abstract

Interpretable machine learning has been focusing on explaining final models that optimize performance. The state-of-the-art Shapley additive explanations (SHAP) locally explains the variable impact on individual predictions and has recently been extended to provide global assessments across the dataset. Our work further extends "global" assessments to a set of models that are "good enough" and are practically as relevant as the final model to a prediction task. The resulting Shapley variable importance cloud consists of Shapley-based importance measures from each good model and pools information across models to provide an overall importance measure, with uncertainty explicitly quantified to support formal statistical inference. We developed visualizations to highlight the uncertainty and to illustrate its implications to practical inference. Building on a common theoretical basis, our method seamlessly complements the widely adopted SHAP assessments of a single final model to avoid biased inference, which we demonstrate in two experiments using recidivism prediction data and clinical data.

摘要

可解释的机器学习一直专注于解释优化性能的最终模型。最先进的Shapley值加法解释(SHAP)在局部层面解释变量对个体预测的影响,并且最近已扩展到可对整个数据集进行全局评估。我们的工作进一步将“全局”评估扩展到一组“足够好”且在实际中与最终模型对预测任务同样相关的模型。由此产生的Shapley变量重要性云由每个良好模型基于Shapley值的重要性度量组成,并汇总各模型间的信息以提供一个总体重要性度量,同时明确量化不确定性以支持形式化统计推断。我们开发了可视化方法来突出不确定性,并说明其对实际推断的影响。基于共同的理论基础,我们的方法无缝补充了广泛采用的对单个最终模型的SHAP评估,以避免有偏差的推断,我们在使用累犯预测数据和临床数据的两个实验中证明了这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ae/9023900/b577f015aeff/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验