Department of Chemistry, Wake Forest Universitygrid.241167.7, Winston-Salem, North Carolina, USA.
J Bacteriol. 2022 May 17;204(5):e0000922. doi: 10.1128/jb.00009-22. Epub 2022 Apr 25.
Posttranscriptional modifications to tRNA are critical elements for the folding and functionality of these adaptor molecules. Sulfur modifications in tRNA are installed by specialized enzymes that act on cognate tRNA substrates at specific locations. Most studied organisms contain a general cysteine desulfurase to mobilize sulfur for the synthesis of S-tRNA and other thio-cofactors. Bacillus subtilis and other Gram-positive bacteria encode multiple cysteine desulfurases that partner with specific sulfur acceptors in the biosynthesis of thio-cofactors. This metabolic layout suggests an alternate mode of regulation in these biosynthetic pathways. In this study, tRNA modifications were exploited as a readout for the functionality of pathways involving cysteine desulfurases. These analyses showed that the relative abundance of 2-thiouridine-modified tRNA (sU) responds to sulfur availability in the growth medium in a dose-dependent manner. This study found that low sulfur concentrations lead to decreased levels of the sU cysteine desulfurase YrvO and thiouridylase MnmA, without altering the levels of other cysteine desulfurases, SufS, NifS, and NifZ. Analysis of pathway metabolites that depend on the activity of cysteine desulfurases indicates that sulfur nutrient availability specifically impacts sU accumulation while having no effect on the levels of other S-modified tRNA or activity levels of Fe-S enzymes. Collectively, these results support a model in which sU tRNA serves as a marker for sulfur availability in B. subtilis. The 2-thiouridine (sU) tRNA modification is found ubiquitously across all domains of life. YrvO and MnmA, the enzymes involved in this modification, are essential in B. subtilis, confirming the well-established role of sU in maintaining translational efficiency and, consequently, cellular viability. Herein, we show that in the model Gram-positive organism Bacillus subtilis, the levels of sU are responsive to sulfur availability. Downregulation of the sU biosynthetic components leads to lower sU levels, which may serve as a signal for the slowing of the translational apparatus during cellular nutrient insufficiency. Our findings provide the basis for the identification of a potential bacterial mode of regulation during S-metabolite depletion that may use sU as a marker of suboptimal metabolic status.
tRNA 的转录后修饰对于这些衔接分子的折叠和功能至关重要。tRNA 中的硫修饰是由专门的酶在特定位置作用于同源 tRNA 底物进行安装的。大多数研究的生物体都含有一种通用的半胱氨酸脱硫酶,用于为 S-tRNA 和其他硫辅因子的合成移动硫。枯草芽孢杆菌和其他革兰氏阳性菌编码多种半胱氨酸脱硫酶,它们与硫辅因子生物合成中的特定硫受体合作。这种代谢布局表明,这些生物合成途径中的调控可能存在另一种模式。在这项研究中,tRNA 修饰被用作涉及半胱氨酸脱硫酶的途径功能的读出。这些分析表明,在生长培养基中,2-硫尿嘧啶修饰的 tRNA(sU)的相对丰度以剂量依赖的方式响应硫的可用性。本研究发现,低硫浓度会导致 sU 半胱氨酸脱硫酶 YrvO 和硫尿嘧啶酶 MnmA 的水平降低,而不改变其他半胱氨酸脱硫酶 SufS、NifS 和 NifZ 的水平。依赖于半胱氨酸脱硫酶活性的途径代谢物的分析表明,硫营养物质的可用性特异性地影响 sU 的积累,而对其他 S 修饰的 tRNA 水平或 Fe-S 酶的活性水平没有影响。总的来说,这些结果支持了 sU tRNA 可作为枯草芽孢杆菌中硫可用性的标志物的模型。2-硫尿嘧啶(sU)tRNA 修饰在所有生命领域中普遍存在。参与这种修饰的酶 YrvO 和 MnmA 在枯草芽孢杆菌中是必不可少的,这证实了 sU 在维持翻译效率以及因此维持细胞活力方面的作用已得到充分确立。在此,我们表明,在模型革兰氏阳性菌枯草芽孢杆菌中,sU 的水平对硫的可用性有反应。sU 生物合成成分的下调导致 sU 水平降低,这可能作为细胞营养不足时翻译装置减速的信号。我们的发现为鉴定在 S 代谢物耗尽期间细菌潜在的调节模式提供了基础,该模式可能使用 sU 作为代谢状态不佳的标志物。