Suppr超能文献

硫可用性影响枯草芽孢杆菌中 2-硫尿苷 tRNA 修饰的积累。

Sulfur Availability Impacts Accumulation of the 2-Thiouridine tRNA Modification in Bacillus subtilis.

机构信息

Department of Chemistry, Wake Forest Universitygrid.241167.7, Winston-Salem, North Carolina, USA.

出版信息

J Bacteriol. 2022 May 17;204(5):e0000922. doi: 10.1128/jb.00009-22. Epub 2022 Apr 25.

Abstract

Posttranscriptional modifications to tRNA are critical elements for the folding and functionality of these adaptor molecules. Sulfur modifications in tRNA are installed by specialized enzymes that act on cognate tRNA substrates at specific locations. Most studied organisms contain a general cysteine desulfurase to mobilize sulfur for the synthesis of S-tRNA and other thio-cofactors. Bacillus subtilis and other Gram-positive bacteria encode multiple cysteine desulfurases that partner with specific sulfur acceptors in the biosynthesis of thio-cofactors. This metabolic layout suggests an alternate mode of regulation in these biosynthetic pathways. In this study, tRNA modifications were exploited as a readout for the functionality of pathways involving cysteine desulfurases. These analyses showed that the relative abundance of 2-thiouridine-modified tRNA (sU) responds to sulfur availability in the growth medium in a dose-dependent manner. This study found that low sulfur concentrations lead to decreased levels of the sU cysteine desulfurase YrvO and thiouridylase MnmA, without altering the levels of other cysteine desulfurases, SufS, NifS, and NifZ. Analysis of pathway metabolites that depend on the activity of cysteine desulfurases indicates that sulfur nutrient availability specifically impacts sU accumulation while having no effect on the levels of other S-modified tRNA or activity levels of Fe-S enzymes. Collectively, these results support a model in which sU tRNA serves as a marker for sulfur availability in B. subtilis. The 2-thiouridine (sU) tRNA modification is found ubiquitously across all domains of life. YrvO and MnmA, the enzymes involved in this modification, are essential in B. subtilis, confirming the well-established role of sU in maintaining translational efficiency and, consequently, cellular viability. Herein, we show that in the model Gram-positive organism Bacillus subtilis, the levels of sU are responsive to sulfur availability. Downregulation of the sU biosynthetic components leads to lower sU levels, which may serve as a signal for the slowing of the translational apparatus during cellular nutrient insufficiency. Our findings provide the basis for the identification of a potential bacterial mode of regulation during S-metabolite depletion that may use sU as a marker of suboptimal metabolic status.

摘要

tRNA 的转录后修饰对于这些衔接分子的折叠和功能至关重要。tRNA 中的硫修饰是由专门的酶在特定位置作用于同源 tRNA 底物进行安装的。大多数研究的生物体都含有一种通用的半胱氨酸脱硫酶,用于为 S-tRNA 和其他硫辅因子的合成移动硫。枯草芽孢杆菌和其他革兰氏阳性菌编码多种半胱氨酸脱硫酶,它们与硫辅因子生物合成中的特定硫受体合作。这种代谢布局表明,这些生物合成途径中的调控可能存在另一种模式。在这项研究中,tRNA 修饰被用作涉及半胱氨酸脱硫酶的途径功能的读出。这些分析表明,在生长培养基中,2-硫尿嘧啶修饰的 tRNA(sU)的相对丰度以剂量依赖的方式响应硫的可用性。本研究发现,低硫浓度会导致 sU 半胱氨酸脱硫酶 YrvO 和硫尿嘧啶酶 MnmA 的水平降低,而不改变其他半胱氨酸脱硫酶 SufS、NifS 和 NifZ 的水平。依赖于半胱氨酸脱硫酶活性的途径代谢物的分析表明,硫营养物质的可用性特异性地影响 sU 的积累,而对其他 S 修饰的 tRNA 水平或 Fe-S 酶的活性水平没有影响。总的来说,这些结果支持了 sU tRNA 可作为枯草芽孢杆菌中硫可用性的标志物的模型。2-硫尿嘧啶(sU)tRNA 修饰在所有生命领域中普遍存在。参与这种修饰的酶 YrvO 和 MnmA 在枯草芽孢杆菌中是必不可少的,这证实了 sU 在维持翻译效率以及因此维持细胞活力方面的作用已得到充分确立。在此,我们表明,在模型革兰氏阳性菌枯草芽孢杆菌中,sU 的水平对硫的可用性有反应。sU 生物合成成分的下调导致 sU 水平降低,这可能作为细胞营养不足时翻译装置减速的信号。我们的发现为鉴定在 S 代谢物耗尽期间细菌潜在的调节模式提供了基础,该模式可能使用 sU 作为代谢状态不佳的标志物。

相似文献

1
Sulfur Availability Impacts Accumulation of the 2-Thiouridine tRNA Modification in Bacillus subtilis.
J Bacteriol. 2022 May 17;204(5):e0000922. doi: 10.1128/jb.00009-22. Epub 2022 Apr 25.
2
Abbreviated Pathway for Biosynthesis of 2-Thiouridine in Bacillus subtilis.
J Bacteriol. 2015 Jun;197(11):1952-62. doi: 10.1128/JB.02625-14. Epub 2015 Mar 30.
3
Functional Analysis of Bacillus subtilis Genes Involved in the Biosynthesis of 4-Thiouridine in tRNA.
J Bacteriol. 2012 Sep;194(18):4933-40. doi: 10.1128/JB.00842-12. Epub 2012 Jul 6.
4
Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors.
Biochim Biophys Acta. 2015 Jun;1853(6):1470-80. doi: 10.1016/j.bbamcr.2014.10.018. Epub 2014 Oct 27.
5
MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli.
Biochemistry. 2003 Feb 4;42(4):1109-17. doi: 10.1021/bi026536+.
6
B. subtilis as a Model for Studying the Assembly of Fe-S Clusters in Gram-Positive Bacteria.
Methods Enzymol. 2017;595:185-212. doi: 10.1016/bs.mie.2017.07.009. Epub 2017 Aug 18.
8
Diverse Mechanisms of Sulfur Decoration in Bacterial tRNA and Their Cellular Functions.
Biomolecules. 2017 Mar 22;7(1):33. doi: 10.3390/biom7010033.
10

引用本文的文献

1
Alternate routes to mnmsU synthesis in Gram-positive bacteria.
J Bacteriol. 2024 Apr 18;206(4):e0045223. doi: 10.1128/jb.00452-23. Epub 2024 Mar 29.
2
A tRNA modification in facilitates optimal intracellular growth.
Elife. 2023 Sep 27;12:RP87146. doi: 10.7554/eLife.87146.
3
The elements of life: A biocentric tour of the periodic table.
Adv Microb Physiol. 2023;82:1-127. doi: 10.1016/bs.ampbs.2022.11.001. Epub 2023 Jan 30.
4
A tRNA modification in facilitates optimal intracellular growth.
bioRxiv. 2023 Jun 9:2023.02.20.529267. doi: 10.1101/2023.02.20.529267.

本文引用的文献

1
tRNA Modifications as a Readout of S and Fe-S Metabolism.
Methods Mol Biol. 2021;2353:137-154. doi: 10.1007/978-1-0716-1605-5_8.
2
Iron-sulfur biology invades tRNA modification: the case of U34 sulfuration.
Nucleic Acids Res. 2021 Apr 19;49(7):3997-4007. doi: 10.1093/nar/gkab138.
3
Structural Evidence for a [4Fe-5S] Intermediate in the Non-Redox Desulfuration of Thiouracil.
Angew Chem Int Ed Engl. 2021 Jan 4;60(1):424-431. doi: 10.1002/anie.202011211. Epub 2020 Nov 4.
4
Extracurricular Functions of tRNA Modifications in Microorganisms.
Genes (Basel). 2020 Aug 7;11(8):907. doi: 10.3390/genes11080907.
6
tRNA wobble-uridine modifications as amino acid sensors and regulators of cellular metabolic state.
Curr Genet. 2020 Jun;66(3):475-480. doi: 10.1007/s00294-019-01045-y. Epub 2019 Nov 22.
7
Bacillus subtilis exhibits MnmC-like tRNA modification activities.
RNA Biol. 2018;15(9):1167-1173. doi: 10.1080/15476286.2018.1517012. Epub 2018 Sep 24.
8
MODOMICS: a database of RNA modification pathways. 2017 update.
Nucleic Acids Res. 2018 Jan 4;46(D1):D303-D307. doi: 10.1093/nar/gkx1030.
9
B. subtilis as a Model for Studying the Assembly of Fe-S Clusters in Gram-Positive Bacteria.
Methods Enzymol. 2017;595:185-212. doi: 10.1016/bs.mie.2017.07.009. Epub 2017 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验