Suppr超能文献

氧化磷酸化介导的帕金森病发病机制及其通过 Akt 信号的影响。

Oxidative phosphorylation mediated pathogenesis of Parkinson's disease and its implication via Akt signaling.

机构信息

Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.

Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.

出版信息

Neurochem Int. 2022 Jul;157:105344. doi: 10.1016/j.neuint.2022.105344. Epub 2022 Apr 26.

Abstract

Substantia Nigra Pars-compacta (SNpc), in the basal ganglion region, is a primary source of dopamine release. These dopaminergic neurons require more energy than other neurons, as they are highly arborized and redundant. Neurons meet most of their energy demand (∼90%) from mitochondria. Oxidative phosphorylation (OxPhos) is the primary pathway for energy production. Many genes involved in Parkinson's disease (PD) have been associated with OxPhos, especially complex I. Abrogation in complex I leads to reduced ATP formation in these neurons, succumbing to death by inducing apoptosis. This review discusses the interconnection between complex I-associated PD genes and specific mitochondrial metabolic factors (MMFs) of OxPhos. Interestingly, all the complex I-associated PD genes discussed here have been linked to the Akt signaling pathway; thus, neuron survival is promoted and smooth mitochondrial function is ensured. Any changes in these genes disrupt the Akt pathway, which hampers the opening of the permeability transition pore (PTP) via GSK3β dephosphorylation; promotes destabilization of OxPhos; and triggers the release of pro-apoptotic factors.

摘要

黑质致密部(SNpc)位于基底神经节区域,是多巴胺释放的主要来源。这些多巴胺能神经元比其他神经元需要更多的能量,因为它们具有高度分枝和冗余。神经元通过线粒体满足其大部分能量需求(约 90%)。氧化磷酸化(OxPhos)是能量产生的主要途径。许多与帕金森病(PD)相关的基因都与 OxPhos 有关,尤其是复合物 I。复合物 I 的缺失会导致这些神经元中 ATP 的形成减少,通过诱导细胞凋亡而死亡。本综述讨论了与复合物 I 相关的 PD 基因与 OxPhos 的特定线粒体代谢因子(MMFs)之间的相互联系。有趣的是,这里讨论的所有与复合物 I 相关的 PD 基因都与 Akt 信号通路有关;因此,促进神经元存活并确保线粒体功能平稳。这些基因的任何变化都会破坏 Akt 通路,这会通过 GSK3β 去磷酸化阻碍通透性转换孔(PTP)的开放;促进 OxPhos 的不稳定性;并触发促凋亡因子的释放。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验