LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
Water Res. 2022 Jun 30;218:118497. doi: 10.1016/j.watres.2022.118497. Epub 2022 Apr 25.
Antibiotics are often applied in aquaculture to prevent fish diseases. These substances can cause disturbances on receiving waters, when not properly eliminated from the aquaculture effluents. In this work, ozone (O) was investigated as a possible oxidizing agent to remove fishery antibiotics from aquaculture effluents: florfenicol (FF), oxytetracycline (OTC), sulfadimethoxine (SDM), sulfamethoxazole (SMX), and trimethoprim (TMP). Batch experiments were performed using ultrapure water and aquaculture effluents spiked with a mixture of target antibiotics at relatively high concentrations (10 mg L each). OTC, SMX and TMP were fully removed (< 30 min) regardless of the tested conditions, mainly by O direct attack. In contrast, FF was partially removed in 30 min (∼ 10 and 60%, in aquaculture effluents and ultrapure water, respectively), but only in the presence of hydroxyl radicals (HO), the FF concentrations reaching levels below the detection limits in ultrapure water after 60 min. In the case of SDM, its degradation was highly influenced by the selected water matrix, but with removals always higher than 68%. In continuous-flow experiments applying more environmentally relevant antibiotic concentrations (100 ng L each) and low O doses (1.5 mg L), ozonation highly removed (> 98%) all tested antibiotics from aquaculture effluents with a hydraulic retention time (HRT) of 10 min, except FF (68%). Although by-products were detected in treated samples, zebrafish (Danio rerio) embryotoxicity tests did not show a toxicity increase by applying this ozonation treatment. Ozonation is thus a possible solution to remove antibiotics from aquaculture effluents. Still, full-scale studies in aquaculture farms are needed, and generation of HO may be favoured to readily oxidize the FF antibiotic.
抗生素常用于水产养殖以预防鱼类疾病。这些物质如果没有从养殖废水中得到适当的去除,可能会对受纳水体造成干扰。在这项工作中,臭氧 (O) 被用作一种可能的氧化剂,以去除水产养殖废水中的渔用抗生素:氟苯尼考 (FF)、土霉素 (OTC)、磺胺二甲氧嘧啶 (SDM)、磺胺甲噁唑 (SMX) 和甲氧苄啶 (TMP)。使用超纯水和养殖废水进行了间歇实验,在相对较高的浓度 (每种 10mg/L) 下用目标抗生素混合物进行了加标。无论测试条件如何,OTC、SMX 和 TMP 均被完全去除(<30 分钟),主要是通过 O 直接攻击。相比之下,FF 在 30 分钟内部分去除(在养殖废水中和超纯水中分别约为 10%和 60%),但仅在羟基自由基 (HO) 存在下,FF 浓度在 60 分钟后达到超纯水中的检测限以下。对于 SDM,其降解受所选水基质的强烈影响,但去除率始终高于 68%。在连续流动实验中,应用更具环境相关性的抗生素浓度(每种 100ng/L)和低剂量的 O(1.5mg/L),臭氧化在 10 分钟的水力停留时间 (HRT) 内从养殖废水中高度去除(>98%)所有测试的抗生素,除了 FF(68%)。尽管在处理后的样品中检测到了副产物,但应用这种臭氧化处理后,斑马鱼(Danio rerio)胚胎毒性测试并未显示毒性增加。因此,臭氧化是一种从水产养殖废水中去除抗生素的可行方法。然而,仍需要在水产养殖场进行全面研究,并且可能需要有利于生成 HO 的条件,以快速氧化 FF 抗生素。