Suppr超能文献

PyLiger:用于 Python 的可扩展单细胞多组学数据集成。

PyLiger: scalable single-cell multi-omic data integration in Python.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA.

出版信息

Bioinformatics. 2022 May 13;38(10):2946-2948. doi: 10.1093/bioinformatics/btac190.

Abstract

MOTIVATION

LIGER (Linked Inference of Genomic Experimental Relationships) is a widely used R package for single-cell multi-omic data integration. However, many users prefer to analyze their single-cell datasets in Python, which offers an attractive syntax and highly optimized scientific computing libraries for increased efficiency.

RESULTS

We developed PyLiger, a Python package for integrating single-cell multi-omic datasets. PyLiger offers faster performance than the previous R implementation (2-5× speedup), interoperability with AnnData format, flexible on-disk or in-memory analysis capability and new functionality for gene ontology enrichment analysis. The on-disk capability enables analysis of arbitrarily large single-cell datasets using fixed memory.

AVAILABILITY AND IMPLEMENTATION

PyLiger is available on Github at https://github.com/welch-lab/pyliger and on the Python Package Index.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

LIGER(Linked Inference of Genomic Experimental Relationships)是一个广泛使用的 R 包,用于单细胞多组学数据集成。然而,许多用户更喜欢在 Python 中分析他们的单细胞数据集,Python 提供了吸引人的语法和高度优化的科学计算库,以提高效率。

结果

我们开发了 PyLiger,这是一个用于整合单细胞多组学数据集的 Python 包。PyLiger 提供了比以前的 R 实现更快的性能(速度提高 2-5 倍),与 AnnData 格式的互操作性,灵活的磁盘或内存分析能力,以及新的用于基因本体富集分析的功能。磁盘上的功能使我们能够使用固定内存分析任意大的单细胞数据集。

可用性和实现

PyLiger 可在 Github 上的 https://github.com/welch-lab/pyliger 和 Python 包索引上获得。

补充信息

补充数据可在生物信息学在线获得。

相似文献

1
PyLiger: scalable single-cell multi-omic data integration in Python.
Bioinformatics. 2022 May 13;38(10):2946-2948. doi: 10.1093/bioinformatics/btac190.
2
GSEApy: a comprehensive package for performing gene set enrichment analysis in Python.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btac757.
4
rGREAT: an R/bioconductor package for functional enrichment on genomic regions.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btac745.
6
PyRanges: efficient comparison of genomic intervals in Python.
Bioinformatics. 2020 Feb 1;36(3):918-919. doi: 10.1093/bioinformatics/btz615.
7
pyBedGraph: a python package for fast operations on 1D genomic signal tracks.
Bioinformatics. 2020 May 1;36(10):3234-3235. doi: 10.1093/bioinformatics/btaa061.
8
MoNET: an R package for multi-omic network analysis.
Bioinformatics. 2022 Jan 27;38(4):1165-1167. doi: 10.1093/bioinformatics/btab722.
9
HiCRep.py: fast comparison of Hi-C contact matrices in Python.
Bioinformatics. 2021 Sep 29;37(18):2996-2997. doi: 10.1093/bioinformatics/btab097.
10
Plotgardener: cultivating precise multi-panel figures in R.
Bioinformatics. 2022 Mar 28;38(7):2042-2045. doi: 10.1093/bioinformatics/btac057.

引用本文的文献

1
Integrating single-cell multimodal epigenomic data using 1D convolutional neural networks.
Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btae705.
2
Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics.
Nat Methods. 2024 Oct;21(10):1806-1817. doi: 10.1038/s41592-024-02380-w. Epub 2024 Aug 26.
3
scVIC: deep generative modeling of heterogeneity for scRNA-seq data.
Bioinform Adv. 2024 Jun 13;4(1):vbae086. doi: 10.1093/bioadv/vbae086. eCollection 2024.
5
Integrating single-cell multimodal epigenomic data using 1D-convolutional neural networks.
bioRxiv. 2024 Feb 19:2024.02.16.580655. doi: 10.1101/2024.02.16.580655.
6
Applications of multi-omics analysis in human diseases.
MedComm (2020). 2023 Jul 31;4(4):e315. doi: 10.1002/mco2.315. eCollection 2023 Aug.
7
LSMMD-MA: scaling multimodal data integration for single-cell genomics data analysis.
Bioinformatics. 2023 Jul 1;39(7). doi: 10.1093/bioinformatics/btad420.

本文引用的文献

1
Summary Visualizations of Gene Ontology Terms With GO-Figure!
Front Bioinform. 2021 Apr 1;1:638255. doi: 10.3389/fbinf.2021.638255. eCollection 2021.
2
A Python library for probabilistic analysis of single-cell omics data.
Nat Biotechnol. 2022 Feb;40(2):163-166. doi: 10.1038/s41587-021-01206-w.
3
Iterative single-cell multi-omic integration using online learning.
Nat Biotechnol. 2021 Aug;39(8):1000-1007. doi: 10.1038/s41587-021-00867-x. Epub 2021 Apr 19.
4
Generalizing RNA velocity to transient cell states through dynamical modeling.
Nat Biotechnol. 2020 Dec;38(12):1408-1414. doi: 10.1038/s41587-020-0591-3. Epub 2020 Aug 3.
5
Fast, sensitive and accurate integration of single-cell data with Harmony.
Nat Methods. 2019 Dec;16(12):1289-1296. doi: 10.1038/s41592-019-0619-0. Epub 2019 Nov 18.
6
Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity.
Cell. 2019 Jun 13;177(7):1873-1887.e17. doi: 10.1016/j.cell.2019.05.006. Epub 2019 Jun 6.
7
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.
8
Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain.
Cell. 2018 Aug 9;174(4):1015-1030.e16. doi: 10.1016/j.cell.2018.07.028.
9
GOATOOLS: A Python library for Gene Ontology analyses.
Sci Rep. 2018 Jul 18;8(1):10872. doi: 10.1038/s41598-018-28948-z.
10
SCANPY: large-scale single-cell gene expression data analysis.
Genome Biol. 2018 Feb 6;19(1):15. doi: 10.1186/s13059-017-1382-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验