Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
Bioinformatics. 2022 May 13;38(10):2946-2948. doi: 10.1093/bioinformatics/btac190.
LIGER (Linked Inference of Genomic Experimental Relationships) is a widely used R package for single-cell multi-omic data integration. However, many users prefer to analyze their single-cell datasets in Python, which offers an attractive syntax and highly optimized scientific computing libraries for increased efficiency.
We developed PyLiger, a Python package for integrating single-cell multi-omic datasets. PyLiger offers faster performance than the previous R implementation (2-5× speedup), interoperability with AnnData format, flexible on-disk or in-memory analysis capability and new functionality for gene ontology enrichment analysis. The on-disk capability enables analysis of arbitrarily large single-cell datasets using fixed memory.
PyLiger is available on Github at https://github.com/welch-lab/pyliger and on the Python Package Index.
Supplementary data are available at Bioinformatics online.
LIGER(Linked Inference of Genomic Experimental Relationships)是一个广泛使用的 R 包,用于单细胞多组学数据集成。然而,许多用户更喜欢在 Python 中分析他们的单细胞数据集,Python 提供了吸引人的语法和高度优化的科学计算库,以提高效率。
我们开发了 PyLiger,这是一个用于整合单细胞多组学数据集的 Python 包。PyLiger 提供了比以前的 R 实现更快的性能(速度提高 2-5 倍),与 AnnData 格式的互操作性,灵活的磁盘或内存分析能力,以及新的用于基因本体富集分析的功能。磁盘上的功能使我们能够使用固定内存分析任意大的单细胞数据集。
PyLiger 可在 Github 上的 https://github.com/welch-lab/pyliger 和 Python 包索引上获得。
补充数据可在生物信息学在线获得。