Suppr超能文献

宏基因组下一代测序检测在诊断下呼吸道感染中崭露头角。

Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections.

机构信息

National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, PR China.

Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, PR China.

出版信息

J Adv Res. 2021 Sep 29;38:201-212. doi: 10.1016/j.jare.2021.09.012. eCollection 2022 May.

Abstract

Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis.

摘要

宏基因组下一代测序(mNGS)改变了下呼吸道感染(LRIs)的诊断格局。随着新一代测序技术的发展,现在可以使用单一的 mNGS 分析来评估样本中的所有微生物。mNGS 在 LRIs 中的应用涵盖了广泛的领域,包括 LRI 诊断、气道微生物组分析、人体宿主反应分析和耐药性预测。mNGS 目前正处于一个令人兴奋的过渡阶段;然而,在临床应用之前,还有一些障碍需要克服,例如人类核酸的耗竭、定植与感染的区分、成本高等等。

综述目的

在这篇综述中,我们总结了 mNGS 在 LRI 诊断中的潜在应用和挑战,以促进 mNGS 在临床环境中整合到呼吸道感染患者的管理中。

综述的关键科学概念

一旦 mNGS 的分析验证、临床验证和临床实用性得到证明,它将成为传染病诊断领域的一个重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9578/9091713/21dad9fb7e9f/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验