Suppr超能文献

FTMove:通过映射多个蛋白质结构来检测和分析隐秘和变构结合位点的网络服务器。

FTMove: A Web Server for Detection and Analysis of Cryptic and Allosteric Binding Sites by Mapping Multiple Protein Structures.

机构信息

Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

J Mol Biol. 2022 Jun 15;434(11):167587. doi: 10.1016/j.jmb.2022.167587. Epub 2022 Apr 18.

Abstract

Protein mapping distributes many copies of different molecular probes on the surface of a target protein in order to determine binding hot spots, regions that are highly preferable for ligand binding. While mapping of X-ray structures by the FTMap server is inherently static, this limitation can be overcome by the simultaneous analysis of multiple structures of the protein. FTMove is an automated web server that implements this approach. From the input of a target protein, by PDB code, the server identifies all structures of the protein available in the PDB, runs mapping on them, and combines the results to form binding hot spots and binding sites. The user may also upload their own protein structures, bypassing the PDB search for similar structures. Output of the server consists of the consensus binding sites and the individual mapping results for each structure - including the number of probes located in each binding site, for each structure. This level of detail allows the users to investigate how the strength of a binding site relates to the protein conformation, other binding sites, and the presence of ligands or mutations. In addition, the structures are clustered on the basis of their binding properties. The use of FTMove is demonstrated by application to 22 proteins with known allosteric binding sites; the orthosteric and allosteric binding sites were identified in all but one case, and the sites were typically ranked among the top five. The FTMove server is publicly available at https://ftmove.bu.edu.

摘要

蛋白质绘图技术通过在目标蛋白质的表面分布许多不同的分子探针,以确定结合热点,即配体结合高度优选的区域。虽然 FTMap 服务器对 X 射线结构的映射本质上是静态的,但通过同时分析蛋白质的多个结构可以克服这一限制。FTMove 是一个自动化的网络服务器,实现了这种方法。从目标蛋白质的输入,通过 PDB 代码,服务器识别 PDB 中可用的该蛋白质的所有结构,对它们进行映射,并将结果组合起来形成结合热点和结合部位。用户也可以上传自己的蛋白质结构,绕过 PDB 搜索类似的结构。服务器的输出包括共识结合部位和每个结构的单独映射结果 - 包括位于每个结合部位的探针数量,对于每个结构。这种详细程度允许用户研究结合部位的强度与蛋白质构象、其他结合部位以及配体或突变的存在之间的关系。此外,结构根据其结合特性进行聚类。FTMove 的使用通过应用于 22 个具有已知变构结合部位的蛋白质来证明;在所有情况下都确定了正位和变构结合部位,并且这些部位通常排在前五位。FTMove 服务器可在 https://ftmove.bu.edu 上公开获得。

相似文献

1
FTMove: A Web Server for Detection and Analysis of Cryptic and Allosteric Binding Sites by Mapping Multiple Protein Structures.
J Mol Biol. 2022 Jun 15;434(11):167587. doi: 10.1016/j.jmb.2022.167587. Epub 2022 Apr 18.
2
The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins.
Nat Protoc. 2015 May;10(5):733-55. doi: 10.1038/nprot.2015.043. Epub 2015 Apr 9.
3
Conservation of Allosteric Ligand Binding Sites in G-Protein Coupled Receptors.
J Chem Inf Model. 2022 Oct 24;62(20):4937-4954. doi: 10.1021/acs.jcim.2c00209. Epub 2022 Oct 4.
4
Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites.
J Chem Inf Model. 2024 Mar 25;64(6):2084-2100. doi: 10.1021/acs.jcim.3c01969. Epub 2024 Mar 8.
5
NRIMD, a Web Server for Analyzing Protein Allosteric Interactions Based on Molecular Dynamics Simulation.
J Chem Inf Model. 2024 Oct 14;64(19):7176-7183. doi: 10.1021/acs.jcim.4c00783. Epub 2024 Jul 11.
7
FTFlex: accounting for binding site flexibility to improve fragment-based identification of druggable hot spots.
Bioinformatics. 2013 May 1;29(9):1218-9. doi: 10.1093/bioinformatics/btt102. Epub 2013 Mar 7.
8
FTMAP: extended protein mapping with user-selected probe molecules.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W271-5. doi: 10.1093/nar/gks441. Epub 2012 May 15.
9
Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques.
Bioinformatics. 2009 Mar 1;25(5):621-7. doi: 10.1093/bioinformatics/btp036. Epub 2009 Jan 28.
10
ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W215-20. doi: 10.1093/nar/gku460. Epub 2014 May 26.

引用本文的文献

1
Decoding allosteric landscapes: computational methodologies for enzyme modulation and drug discovery.
RSC Chem Biol. 2025 Feb 14;6(4):539-554. doi: 10.1039/d4cb00282b. eCollection 2025 Apr 2.
2
CryptoBench: cryptic protein-ligand binding sites dataset and benchmark.
Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btae745.
4
Reinforcing Tunnel Network Exploration in Proteins Using Gaussian Accelerated Molecular Dynamics.
J Chem Inf Model. 2024 Aug 26;64(16):6623-6635. doi: 10.1021/acs.jcim.4c00966. Epub 2024 Aug 15.
5
Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites.
J Chem Inf Model. 2024 Mar 25;64(6):2084-2100. doi: 10.1021/acs.jcim.3c01969. Epub 2024 Mar 8.
7
Conservation of Hot Spots and Ligand Binding Sites in Protein Models by AlphaFold2.
J Chem Inf Model. 2024 Feb 12;64(3):960-973. doi: 10.1021/acs.jcim.3c01761. Epub 2024 Jan 22.
8
FASTDock: A Pipeline for Allosteric Drug Discovery.
J Chem Inf Model. 2023 Nov 27;63(22):7219-7227. doi: 10.1021/acs.jcim.3c00895. Epub 2023 Nov 8.
9
AlphaFold, allosteric, and orthosteric drug discovery: Ways forward.
Drug Discov Today. 2023 Jun;28(6):103551. doi: 10.1016/j.drudis.2023.103551. Epub 2023 Mar 11.

本文引用的文献

1
Assessing the binding properties of CASP14 targets and models.
Proteins. 2021 Dec;89(12):1922-1939. doi: 10.1002/prot.26209. Epub 2021 Aug 19.
2
Structure-Based Analysis of Cryptic-Site Opening.
Structure. 2020 Feb 4;28(2):223-235.e2. doi: 10.1016/j.str.2019.11.007. Epub 2019 Dec 3.
3
Kinase Atlas: Druggability Analysis of Potential Allosteric Sites in Kinases.
J Med Chem. 2019 Jul 25;62(14):6512-6524. doi: 10.1021/acs.jmedchem.9b00089. Epub 2019 Jul 5.
4
Defining a new nomenclature for the structures of active and inactive kinases.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6818-6827. doi: 10.1073/pnas.1814279116. Epub 2019 Mar 13.
5
MMseqs2 desktop and local web server app for fast, interactive sequence searches.
Bioinformatics. 2019 Aug 15;35(16):2856-2858. doi: 10.1093/bioinformatics/bty1057.
6
Cryptic binding sites on proteins: definition, detection, and druggability.
Curr Opin Chem Biol. 2018 Jun;44:1-8. doi: 10.1016/j.cbpa.2018.05.003. Epub 2018 May 23.
7
Exploring the structural origins of cryptic sites on proteins.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3416-E3425. doi: 10.1073/pnas.1711490115. Epub 2018 Mar 26.
8
Clustal Omega for making accurate alignments of many protein sequences.
Protein Sci. 2018 Jan;27(1):135-145. doi: 10.1002/pro.3290. Epub 2017 Oct 30.
9
Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations.
J Am Chem Soc. 2016 Nov 2;138(43):14257-14263. doi: 10.1021/jacs.6b05425. Epub 2016 Oct 20.
10
Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems.
J Phys Chem B. 2016 Aug 25;120(33):8685-95. doi: 10.1021/acs.jpcb.6b03515. Epub 2016 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验