Suppr超能文献

预测模型不适用于因果推断。

Predictive models aren't for causal inference.

机构信息

Ocean Frontier Institute, Dalhousie University, Department of Biology, Halifax, Nova Scotia, Canada.

出版信息

Ecol Lett. 2022 Aug;25(8):1741-1745. doi: 10.1111/ele.14033. Epub 2022 Jun 7.

Abstract

Ecologists often rely on observational data to understand causal relationships. Although observational causal inference methodologies exist, predictive techniques such as model selection based on information criterion (e.g. AIC) remains a common approach used to understand ecological relationships. However, predictive approaches are not appropriate for drawing causal conclusions. Here, we highlight the distinction between predictive and causal inference and show how predictive techniques can lead to biased causal estimates. Instead, we encourage ecologists to valid causal inference methods such as the backdoor criterion, a graphical rule that can be used to determine causal relationships across observational studies.

摘要

生态学家通常依赖观测数据来理解因果关系。虽然存在观测性因果推断方法,但基于信息准则(例如 AIC)进行模型选择等预测技术仍然是用于理解生态关系的常用方法。然而,预测方法并不适合得出因果结论。在这里,我们强调了预测和因果推断之间的区别,并展示了预测技术如何导致有偏差的因果估计。相反,我们鼓励生态学家采用有效的因果推断方法,例如后门准则,这是一种可以用于确定观测研究中因果关系的图形规则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验