Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA.
Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University, São José dos Campos, SP, Brazil.
J Dent Res. 2022 Nov;101(12):1467-1473. doi: 10.1177/00220345221100409. Epub 2022 Jun 10.
Two damage regimes-"brittle" and "ductile"-have been identified in the literature on ceramic grinding, machining, grit blasting, and wear. In the brittle regime, the damage mechanism is essentially crack formation, while in the ductile region, it is quasiplasticity. Onset of the brittle mode poses the greater threat to strength, so it becomes important to understand the mechanics of ductile-brittle thresholds in these materials. Controlled microcontact tests with a sharp indenter are employed to establish such thresholds for a suite of contemporary computer-aided design/computer-aided manufacturing dental ceramics. Plots of flexural strength versus indentation load show a steep decline beyond the threshold, consistent with well-established contact mechanics relations. Threshold dimensions occur on a scale of order 1 µm and contact load of order 1 N, values pertinent to practical grit finishing protocols. The ductile side of ceramic shaping is accessed by reducing grit sizes, applied loads, and depths of cut below critical levels. It is advocated that critical conditions for ductile shaping may be most readily quantified on analogous () plots, but with appropriate machining variable (grit size, depths of cut, infeed rate) replacing load . Working in the ductile region offers the promise of compelling time and cost economies in prosthesis fabrication and preparation.
在陶瓷磨削、加工、喷砂和磨损的文献中,已经确定了两种破坏模式——“脆性”和“延性”。在脆性模式下,损伤机制本质上是裂纹的形成,而在延性区域,则是准塑性。脆性模式的开始对强度构成了更大的威胁,因此了解这些材料的延性-脆性转变的力学特性变得非常重要。采用尖锐压头进行受控微接触测试,以确定一系列当代计算机辅助设计/计算机辅助制造牙科陶瓷的这些阈值。抗弯强度与压痕载荷的关系图显示,超过阈值后会急剧下降,与已建立的接触力学关系一致。阈值尺寸的量级为 1 µm,接触载荷的量级为 1 N,这与实际的喷砂整理方案相关。通过将磨料尺寸、施加的载荷和切削深度降低到临界水平以下,可以进入陶瓷成型的延性侧。有人主张,在类似的 ()图上,最容易量化延性成型的临界条件,但用适当的加工变量(磨料尺寸、切削深度、进给速度)代替载荷。在延性区域工作有望在假体制造和准备方面带来极具吸引力的时间和成本节约。