Suppr超能文献

探索牙科陶瓷的延展性。

Exploring Ductility in Dental Ceramics.

机构信息

Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA.

Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University, São José dos Campos, SP, Brazil.

出版信息

J Dent Res. 2022 Nov;101(12):1467-1473. doi: 10.1177/00220345221100409. Epub 2022 Jun 10.

Abstract

Two damage regimes-"brittle" and "ductile"-have been identified in the literature on ceramic grinding, machining, grit blasting, and wear. In the brittle regime, the damage mechanism is essentially crack formation, while in the ductile region, it is quasiplasticity. Onset of the brittle mode poses the greater threat to strength, so it becomes important to understand the mechanics of ductile-brittle thresholds in these materials. Controlled microcontact tests with a sharp indenter are employed to establish such thresholds for a suite of contemporary computer-aided design/computer-aided manufacturing dental ceramics. Plots of flexural strength versus indentation load show a steep decline beyond the threshold, consistent with well-established contact mechanics relations. Threshold dimensions occur on a scale of order 1 µm and contact load of order 1 N, values pertinent to practical grit finishing protocols. The ductile side of ceramic shaping is accessed by reducing grit sizes, applied loads, and depths of cut below critical levels. It is advocated that critical conditions for ductile shaping may be most readily quantified on analogous () plots, but with appropriate machining variable (grit size, depths of cut, infeed rate) replacing load . Working in the ductile region offers the promise of compelling time and cost economies in prosthesis fabrication and preparation.

摘要

在陶瓷磨削、加工、喷砂和磨损的文献中,已经确定了两种破坏模式——“脆性”和“延性”。在脆性模式下,损伤机制本质上是裂纹的形成,而在延性区域,则是准塑性。脆性模式的开始对强度构成了更大的威胁,因此了解这些材料的延性-脆性转变的力学特性变得非常重要。采用尖锐压头进行受控微接触测试,以确定一系列当代计算机辅助设计/计算机辅助制造牙科陶瓷的这些阈值。抗弯强度与压痕载荷的关系图显示,超过阈值后会急剧下降,与已建立的接触力学关系一致。阈值尺寸的量级为 1 µm,接触载荷的量级为 1 N,这与实际的喷砂整理方案相关。通过将磨料尺寸、施加的载荷和切削深度降低到临界水平以下,可以进入陶瓷成型的延性侧。有人主张,在类似的 ()图上,最容易量化延性成型的临界条件,但用适当的加工变量(磨料尺寸、切削深度、进给速度)代替载荷。在延性区域工作有望在假体制造和准备方面带来极具吸引力的时间和成本节约。

相似文献

1
Exploring Ductility in Dental Ceramics.
J Dent Res. 2022 Nov;101(12):1467-1473. doi: 10.1177/00220345221100409. Epub 2022 Jun 10.
2
Brittle-Ductile Threshold in Lithium Disilicate under Sharp Sliding Contact.
J Dent Res. 2024 Jul;103(8):839-847. doi: 10.1177/00220345241256279. Epub 2024 Jun 14.
3
Impact of machining on the flexural fatigue strength of glass and polycrystalline CAD/CAM ceramics.
Dent Mater. 2017 Nov;33(11):1286-1297. doi: 10.1016/j.dental.2017.07.019. Epub 2017 Aug 14.
6
Strain Rate Effect on the Ductile Brittle Transition in Grinding Hot Pressed SiC Ceramics.
Micromachines (Basel). 2020 May 27;11(6):545. doi: 10.3390/mi11060545.
7
Grinding damage assessment on four high-strength ceramics.
Dent Mater. 2016 Feb;32(2):171-82. doi: 10.1016/j.dental.2015.11.028. Epub 2015 Dec 22.
8
Mechanical characterization of dental ceramics by hertzian contacts.
J Dent Res. 1998 Apr;77(4):589-602. doi: 10.1177/00220345980770041201.
9
Grinding damage assessment for CAD-CAM restorative materials.
Dent Mater. 2017 Mar;33(3):294-308. doi: 10.1016/j.dental.2016.12.004. Epub 2017 Jan 12.

引用本文的文献

2
Mechanical and optical properties of a borosilicate glass used to improve the finishing of 3Y-TZP restorations.
Braz Oral Res. 2024 Sep 2;38:e077. doi: 10.1590/1807-3107bor-2024.vol38.0077. eCollection 2024.
3
Criteria for choosing prosthetic biomaterials according to their physicochemical properties for anterior and posterior sectors. a comprehensive review.
Rev Cient Odontol (Lima). 2024 Mar 30;12(1):e188. doi: 10.21142/2523-2754-1201-2024-188. eCollection 2024 Jan-Mar.
4
Brittle-Ductile Threshold in Lithium Disilicate under Sharp Sliding Contact.
J Dent Res. 2024 Jul;103(8):839-847. doi: 10.1177/00220345241256279. Epub 2024 Jun 14.

本文引用的文献

1
Micromechanics of Machining and Wear in Hard and Brittle Materials.
J Am Ceram Soc. 2021 Jan;104(1):5-22. doi: 10.1111/jace.17502. Epub 2020 Sep 27.
2
Wear of ceramic-based dental materials.
J Mech Behav Biomed Mater. 2019 Apr;92:144-151. doi: 10.1016/j.jmbbm.2019.01.009. Epub 2019 Jan 12.
3
Load-bearing capacity of lithium disilicate and ultra-translucent zirconias.
J Mech Behav Biomed Mater. 2018 Dec;88:170-175. doi: 10.1016/j.jmbbm.2018.08.023. Epub 2018 Aug 21.
4
Internal adjustments decrease the fatigue failure load of bonded simplified lithium disilicate restorations.
Dent Mater. 2018 Sep;34(9):e225-e235. doi: 10.1016/j.dental.2018.05.015. Epub 2018 May 28.
5
Novel Zirconia Materials in Dentistry.
J Dent Res. 2018 Feb;97(2):140-147. doi: 10.1177/0022034517737483. Epub 2017 Oct 16.
6
Dental Ceramics for Restoration and Metal Veneering.
Dent Clin North Am. 2017 Oct;61(4):797-819. doi: 10.1016/j.cden.2017.06.005.
7
Effect of different treatments on the flexural strength of fully versus partially stabilized monolithic zirconia.
J Prosthet Dent. 2017 Aug;118(2):216-220. doi: 10.1016/j.prosdent.2016.10.031. Epub 2017 Jan 31.
8
Grinding damage assessment for CAD-CAM restorative materials.
Dent Mater. 2017 Mar;33(3):294-308. doi: 10.1016/j.dental.2016.12.004. Epub 2017 Jan 12.
9
Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations.
Dent Mater. 2016 Dec;32(12):e327-e337. doi: 10.1016/j.dental.2016.09.025. Epub 2016 Sep 30.
10
Clinical Outcomes of Zirconia Dental Implants: A Systematic Review.
J Dent Res. 2017 Jan;96(1):38-46. doi: 10.1177/0022034516664043. Epub 2016 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验