Suppr超能文献

基因编辑试剂的治疗性体内递送。

Therapeutic in vivo delivery of gene editing agents.

机构信息

Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.

Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.

出版信息

Cell. 2022 Jul 21;185(15):2806-2827. doi: 10.1016/j.cell.2022.03.045. Epub 2022 Jul 6.

Abstract

In vivo gene editing therapies offer the potential to treat the root causes of many genetic diseases. Realizing the promise of therapeutic in vivo gene editing requires the ability to safely and efficiently deliver gene editing agents to relevant organs and tissues in vivo. Here, we review current delivery technologies that have been used to enable therapeutic in vivo gene editing, including viral vectors, lipid nanoparticles, and virus-like particles. Since no single delivery modality is likely to be appropriate for every possible application, we compare the benefits and drawbacks of each method and highlight opportunities for future improvements.

摘要

体内基因编辑疗法为治疗许多遗传性疾病的根本原因提供了可能。要实现体内基因编辑治疗的潜力,就需要有能力将基因编辑试剂安全有效地递送到体内的相关器官和组织中。在这里,我们回顾了目前已被用于实现体内治疗性基因编辑的各种递药技术,包括病毒载体、脂质纳米粒和类病毒颗粒。由于没有任何单一的递药方式可能适用于每种可能的应用,因此我们比较了每种方法的优缺点,并强调了未来改进的机会。

相似文献

1
Therapeutic in vivo delivery of gene editing agents.
Cell. 2022 Jul 21;185(15):2806-2827. doi: 10.1016/j.cell.2022.03.045. Epub 2022 Jul 6.
2
The Promise and Challenge of In Vivo Delivery for Genome Therapeutics.
ACS Chem Biol. 2018 Feb 16;13(2):376-382. doi: 10.1021/acschembio.7b00680. Epub 2017 Oct 19.
3
Delivery of CRISPR/Cas9 for therapeutic genome editing.
J Gene Med. 2019 Jul;21(7):e3107. doi: 10.1002/jgm.3107.
4
Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing.
Acc Chem Res. 2019 Jun 18;52(6):1555-1564. doi: 10.1021/acs.accounts.9b00106. Epub 2019 May 17.
5
Viral and Non-Viral Systems to Deliver Gene Therapeutics to Clinical Targets.
Int J Mol Sci. 2024 Jul 4;25(13):7333. doi: 10.3390/ijms25137333.
6
Viral Delivery of Compact CRISPR-Cas12f for Gene Editing Applications.
CRISPR J. 2024 Jun;7(3):150-155. doi: 10.1089/crispr.2024.0010. Epub 2024 May 2.
7
Gene editing and CRISPR in the clinic: current and future perspectives.
Biosci Rep. 2020 Apr 30;40(4). doi: 10.1042/BSR20200127.
8
In utero delivery of targeted ionizable lipid nanoparticles facilitates in vivo gene editing of hematopoietic stem cells.
Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2400783121. doi: 10.1073/pnas.2400783121. Epub 2024 Jul 30.
9
Tissue-Specific Delivery of CRISPR Therapeutics: Strategies and Mechanisms of Non-Viral Vectors.
Int J Mol Sci. 2020 Oct 5;21(19):7353. doi: 10.3390/ijms21197353.
10
Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for CRISPR/Cas-Based Genome Editing.
ACS Nano. 2020 Aug 25;14(8):9243-9262. doi: 10.1021/acsnano.0c04707. Epub 2020 Jul 22.

引用本文的文献

1
Cutting-edge technologies in neural regeneration.
Cell Regen. 2025 Sep 5;14(1):38. doi: 10.1186/s13619-025-00260-y.
2
TIGER: A tdTomato in vivo genome-editing reporter mouse for investigating precision-editor delivery approaches.
Proc Natl Acad Sci U S A. 2025 Sep 2;122(35):e2506257122. doi: 10.1073/pnas.2506257122. Epub 2025 Aug 29.
3
Programmable self-replicating JEV nanotherapeutics redefine RNA delivery in ALS.
Commun Biol. 2025 Aug 26;8(1):1282. doi: 10.1038/s42003-025-08579-7.
4
Programmable epigenome editing by transient delivery of CRISPR epigenome editor ribonucleoproteins.
Nat Commun. 2025 Aug 26;16(1):7948. doi: 10.1038/s41467-025-63167-x.
7
Transfection Technologies for Next-Generation Therapies.
J Clin Med. 2025 Aug 5;14(15):5515. doi: 10.3390/jcm14155515.
9
Optimization of in vivo delivery methods and their applications in seminiferous tubules of mice.
BMC Biotechnol. 2025 Aug 12;25(1):83. doi: 10.1186/s12896-025-01021-0.

本文引用的文献

1
Visual function restoration in a mouse model of Leber congenital amaurosis via therapeutic base editing.
Mol Ther Nucleic Acids. 2022 Dec 5;31:16-27. doi: 10.1016/j.omtn.2022.11.021. eCollection 2023 Mar 14.
2
Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors.
Nat Biomed Eng. 2022 Nov;6(11):1272-1283. doi: 10.1038/s41551-022-00911-4. Epub 2022 Jul 28.
3
Adenine Base Editing with a Single Adeno-Associated Virus Vector.
GEN Biotechnol. 2022 Jun 1;1(3):285-299. doi: 10.1089/genbio.2022.0015. Epub 2022 Jun 14.
4
In vivo prime editing of a metabolic liver disease in mice.
Sci Transl Med. 2022 Mar 16;14(636):eabl9238. doi: 10.1126/scitranslmed.abl9238.
5
6
CRISPR-based genome editing through the lens of DNA repair.
Mol Cell. 2022 Jan 20;82(2):348-388. doi: 10.1016/j.molcel.2021.12.026.
7
Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases.
Nat Commun. 2022 Jan 18;13(1):366. doi: 10.1038/s41467-022-27962-0.
8
Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges.
J Control Release. 2022 Feb;342:345-361. doi: 10.1016/j.jconrel.2022.01.013. Epub 2022 Jan 10.
9
Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins.
Cell. 2022 Jan 20;185(2):250-265.e16. doi: 10.1016/j.cell.2021.12.021. Epub 2022 Jan 11.
10
A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver.
Mol Ther. 2022 Mar 2;30(3):1343-1351. doi: 10.1016/j.ymthe.2022.01.005. Epub 2022 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验